Личность и Абсолют

Так или иначе, но везде мы имеем здесь 1) число и 2) его инобытие, причем 3) это инобытие дано не развернуто, но лишь как принцип, т. е. оно имеет здесь единственную функцию—выставить напоказ самый факт существования тех или других инобытийных чисел. Это проще всего в сложении: инобытие действует только в том единственном смысле, что оно кроме одного числа, называемого теперь слагаемым, устанавливает факт другого числа, получающего название слагаемого. Так и во всех других действиях.

с) Следовательно, как же мы теперь должны понимать принцип «алгебраичности» в изучаемом нами контексте? Как принцип сводимости данного числа на целое число он оказывается не чем иным, как принципом сопоставления данного числа с его инобытием в простейшем акте полагания этого инобытия. Это инобытие могло бы быть дано не только как простейший акт полагания. Последний мог бы тут развернуться в становящийся, в ставший и даже в выразительный акт полагания. Но в алгебраическом числе этого нет. Алгебраическое число предполагает просто инобытие как годай принцип, без всякой его развернутости. Отсюда и предопределенность всякого числа быть сводимым на целое число.

4. Теперь мы можем и более сознательно отнестись к тому, что такое алгебраическая иррациональность. Поскольку она предполагает в качестве своего .инобытия только те или иные простейшие акты полагания, т. е. поскольку она сводима к целости и может быть из нее получена, постольку единственным источником алгебраической иррациональности может быть только операция извлечения корня. Когда мы извлекаем неизвлекающийся корень, то мы ведь ничего иного не делаем, как просто известным образом сопоставляем два целых числа, и больше Ничего. Следовательно, даже в случае иррациональности инобытие действует не больше как только выставление другого целого числа, инобытийного к данному. Алгебраическая иррациональность и есть не что иное, как образ соотношения двух целых чисел. Становление, необходимое для структуры этой иррациональности (т. е. бесконечное количество десятичных знаков при извлечении «неизвлекающегося» корня), действует здесь как таковое, без всякого принципиального усложнения и расширения; оно реально есть сила, выставляющая один за другим эти десятичные знаки, и притом абсолютно одинаковая в каждом таком знаке. Оно—то ровное поле, на котором бесконечно возникают все более и более мелкие дроби, стремящиеся к недостижимому пределу; и это поле одинаково равнодушно ко всем отдельным моментам этого бесконечного процесса. Иррациональность с таким алогическим становлением в основе мы и называем алгебраической иррациональностью.

5. Что же теперь сказать по поводу общности этого «алгебраизма» для всех изученных нами типов числа? Раз мы нашли во всех них что–то общее, какой–то один единый принцип, то выставить и формулировать этот принцип—это и значит уже выйти за пределы каждого, такого типа, а следовательно, и за пределы всех этих типов, взятых вместе. Принцип «алгебраичности» было бы нецелесообразно формулировать в связи с тем или другим отдельным типом числа, раз этот принцип остается тем же самым и для всех других типов. Теперь же, изучивши все относящиеся сюда отдельные типы, мы смогли выставить и общий принцип их структуры. Но это значит [и] конструировать новый тип числа, в отношении которого все прежние типы числа будут только частным случаем. В нем не будет никаких иных типов числа, кроме тех, которые исследованы нами раньше. Это будут все те же самые положительные и отрицательные, целые и дробные, рациональные и иррациональные числа, все те же нуль, бесконечность и мнимость. Однако в этом новом общем типе будут представлены не они сами, а только их общий конструктивный принцип, а именно сводимость на целое или неразвернуто–ординарная инобытийность. Это и есть спецификум т. н. алгебраического числа, математически определяемого как корень уравнения с целыми коэффициентами. Этот спецификум «корень уравнения с целыми коэффициентами» в философском раскрытии является не чем иным, как принципом числа, потенциально предполагающим свое неразвернуто–ординарное алогическое становление.

6. Однако в этом нашем логическом анализе алгебраического числа может крыться одна неясность, которую необходимо сейчас же устранить. Алгебраическое число, сказали мы, есть число, хранящее в себе потенцию целого числа. Вместе с тем алгебраическим числом мы называем такое, которое отображает в себе свое неразвернутое (так сказать, одномерное) инобытие. Эти два определения, по–нашему, тождественны. Но пожалуй, их тождественность еще не вполне ясна из предыдущего. Тут необходимо обратить внимание на то, что одномерность инобытия есть ведь попросту единство становления, или, другими словами, единообразие его направления. Наличие такого инобытия в недрах числа обеспечивает возможность для него изменяться в прямо противоположные стороны. Если данное число мыслится полученным в результате той или другой арифметической операции (или определенной комбинации этих операций), то наличие в нем его одномерного инобытия есть не что иное, как возможность произвести над ним действие, обратное тому или тем, которые над ним производились. Если число было суммой двух других чисел, то наличие в нем одномерного инобытия обеспечивает возможность произвести из него вычитание одного из двух этих других чисел. Благодаря этому всеобщему принципу можно положительное число превратить в отрицательное и обратно, целое—в дробное и обратно, рациональное—в иррациональное и мнимое и обратно. Но так как основой всяких вообще операций является обыкновенный счет по натуральному ряду, т. е. по всем возможным целым числам, то и возникает потребность говорить о числах, так или [иначе) сводимых к целому числу. Однако для этого сведёния требуется только наличие в данном числе одномерно–инобытийной потенции. Такое инобытие действует просто как сила, выставляющая новые числа в отношении данного, причем эти числа обеспечивают изменяемость данного числа в самых разнообразных, и в особенности в противоположных, направлениях. Максимальное изменение, которое тут может произойти с числом, — это вовлечение его в стихию чистого становления, но последнее тут всегда дано именно в чистейшем, беспримесном виде, как голый принцип, так что рождающаяся здесь иррациональность есть только результат извлечения корня.

Итак, сказать ли, что число сводимо к целому числу, или сказать, что оно хранит в себе одномерно–инобытийную потенцию, — это действительно есть одно и то же.

7. Так как мы рисуем сейчас алгебраическое число как некий общий тип числа, то нам нет нужды входить в рассмотрение того, что в математике называется алгебраической областью или алгебраическим полем (его называют также алгебраическим телом), хотя только эта отрасль математики показала бы нам подробно структуру алгебраических чисел. Мы не будем здесь делать этого, тем более что «арифметической теории алгебраических чисел» нам еще придется коснуться в своем месте.

8. А теперь на очереди тот тип числа, который является диалектической противоположностью алгебраического числа. Этот новый тип будет тоже выразительным, типом, как и алгебраическое число, но здесь мы найдем выражение совсем иной структуры. Из предыдущего сама собой напрашивается идея построить такое число, которое бы, храня в себе свое инобытие (т. е. являясь выразительным), содержало его не в виде простой, одномерной положенности, но развертывала бы его в сложную, многомерную структуру. То становление, которое приносится инобытием, в свою очередь должно вступать в новое становление, получать усложненность, зависящую от привнесения в него еще новых, не зависящих от него моментов. Такая иррациональность уже не может равномерно расстилаться как результат простого извлечения корня. Она сама перешла здесь в свое инобытие, т. е. в нее вплетены моменты, не зависящие от извлечения корня и—тем более—не зависящие ни от какой другой арифметической операции. Такая иррациональность называется трансцедентной; и такие числа, данные в своем соотношении с многомерно–становящимся инобытием, называются трансцедентными.

К анализу этой труднейшей и темнейшей из всей математики числовой категории мы сейчас и приступим.

§ 110. Трансцедентное число (диалектическая категория).

1. Обычное определение трансцедентного числа в математике гласит: трансцедентное число есть то, которое не является корнем никакого уравнения с целыми коэффициентами. Это определение дается по методам того восточного человека, который, желая описать Карапета, указывает на Аванеса и говорит: «Совсем не похож!» Предоставим подобные методы кафедральным академикам и попробуем сами разобраться в этой проблеме, базируясь на тех весьма немногочисленных математических исследованиях, которые относятся к этой области. Но сначала формулируем трансцедентное число как общефилософскую категорию, как она получается в общедиалектическом контексте, — чтобы не потонуть в математической схоластике и формализме, — а потом уже посмотрим, что дает в этом смысле сама математика.

2. Итак, трансцедентное число есть число, соотнесенное со своим инобытием в условиях развернутости (или многомерности) этого инобытия. Уточним это общее определение, полученное еще в конце предыдущего параграфа.

a) Самым главным или по крайней мере исходным пунктом этого определения является соотнесенность числа с инобытием. Следовательно, берем какое–нибудь (алгебраическое) число и берем его отношение к его «инобытию», т. е. к какому–нибудь другому числу. Это отношение двух чисел должно быть все время в центре нашего внимания.

b) Это отношение, однако, должно быть нами взято не просто как таковое. Наше определение трансцедентного числа гласит, что инобытие, привлекаемое здесь, само переходит в свое инобытие, в свое становление. Следовательно, и все только что взятое нами отношение двух чисел также должно перейти в свое инобытие, в свое становление. А это значит, что оно должно осложниться каким–нибудь действием или рядом действий, в результате чего оно потерпело бы ту или иную деформацию.