Личность и Абсолют

Мы уже знаем, что такое перестановки. Чтобы получить одну перестановку из другой, надо произвести известную подстановку. Ясно, что всех возможных подстановок η чисел столько же, сколько возможно всех их перестановок. Из трех элементов, как известно, возможны шесть перестановок:

123 123 1 23 123 123

132 321 213 231 312.

Их мы можем понимать как подстановки[916] причем под каждым верхним числом подписываем то, которое подставляется вместо верхнего. Так, первая подстановка оставляет все число без изменения (т. н. тождественная подстановка); вторая переводит 1 в 1, 2 в 3, 3 в 2; третья цереводит 1 в 3, 2 в 2 и 3 в 1 и т. д. Нетрудно убедиться, что это есть именно группа подстановок, если под композицией понимать последовательное проведение подстановки. Так, «помножим» второй элемент группы на третий: вторая подстановка оставляет 1 без изменения, третья же переводит ее в 3; вторая переводит 2 в 3, третья же 3 в 1; наконец, вторая переводит 3 в 1, третья же 1 в 2; итак, получаем новую подстановку 3, 1, 2, а это есть не что иное, как шестая подстановка. Ассоциативность тут, безусловно, сохранена, но коммутативности не существует—это легко увидеть при соответствующих операциях. Единичным элементом тут является тождественная подстановка, а обратный сразу виден для любой подстановки. Итак, это группа.

b) Часто случается, что, изучая разные предметы, мы замечаем, как они при всей своей несхожести выражаются одной и той же группой, для которой существует, таким образом, только одна таблица Кэли. Такие группы называют изоморфными или, точнее, одноступенно–изоморфными. Другими словами, если элементы двух групп можно расположить так, что если AiAk = Al, то и BiBk=Bh то эти группы изоморфны. И вот в теории групп доказывается теорема: всякая отвлеченная группа изоморфна некоторой группе подстановок. Это сразу видно из таблицы Кэли, в которой каждая строка содержит как раз все элементы группы, а переход от одной строки к другой есть только перестановка этих элементов. Если так, то отсюда мы получаем некоторый универсальный метод исчерпывающего представления любой группы, который к тому же замечательно прост и удобен (хотя простота эта скорее теоретическая, а не практическая). Если мы вспомним вышеприведенный пример с вращением равностороннего треугольника, где этих вращений было именно шесть, то эту же самую группу мы можем представить как группу подстановок трех вершин треугольника А, В, С:

Так же можно представить и приводившуюся группу шести рациональных функций (представляющую, кстати сказать, группу значений ангармонического отношения[917] четырех точек на прямой при всевозможных их перестановках).

c) Но обратим внимание на то, как мы «перемножаем» подстановки. Тут полная аналогия с «умножением» матриц. Можно поэтому всякую группу представить матрично; всякая группа есть в известном смысле группа матриц. Возвращаясь к нашему примеру группы шести рациональных функций, мы можем представить ее изоморфно в матрицах второго порядка так:

То же в виде матриц третьего порядка так:

соответственно таблице Кэли:

Тут мы возвращаемся к данной вначале диалектической дедукции группы из детерминантно–матричных отношений. Ряд матриц связан здесь единым композиционным принципом, скользящим от одного элемента к другому и охватывающим их все вместе. Выразительная природа композиции сказывается именно в этом тяготении одного элемента к другому, в этом смысловом становлении, которое образуется по причине того, что каждый элемент есть «произведение» двух других и все, таким образом, объяты одним взаимным тяготением.