Pavel Florensky History and Philosophy of Art

Это среднее значение кривизны характеризуется как сферический избыток деформированного треугольника, отнесенный к единице его же площади. Иначе говоря, это есть избыток жидкости при деформации треугольника, отнесенный к полному ее количеству, или, иначе говоря, относительное изменение поверхностной емкости нашего треугольника при его деформировании. Представим себе теперь, что треугольник наш делается все меньше и меньше. Тогда площадь его станет беспредельно убывать, но вместе с тем станет беспредельно убывать и сферический избыток (если только рассматриваемая точка не есть исключительная). Отношение же этих убывающих причин будет стремиться к пределу, вызывающему относительное изменение поверхностной емкости в данной точке. Это и есть истинная Гауссова кривизна поверхности в данной точке.

Итак, когда мы обсуждаем кривую поверхность из трехмерного евклидовского пространства, то перенос на нее плоского треугольника мы истолковываем как деформацию и к понятию кривизны подходим из представления, что стороны его сделались кривыми. Но это есть оценка происходящего извне и притом, когда признается этот внешний мир безусловно неизменным; это есть высокомерное объяснение, которое было бы глубоко чуждо и вероятно враждебно для обитателя обсуждаемого треугольника. Гауссова кривизна, как величина l/R^R29 для него есть только формально–аналитический способ выражаться, ибо этот житель не сознает ничего вне поверхности, на которой лежит его треугольник, и потому искривления, как такового, заметить не способен. Оценка же происходящего внутренняя, в пределах доступного его прямому наблюдению, и соответственное выражение кривизны в данной точке будет им построено именно вышеуказанным способом: кривизна поверхности есть относительное изменение поверхностной емкости в данной точке, рассчитанное на единицу площади. Физически изменение кривизны от точки к точке могло бы быть установлено опытами с тонким слоем несжимаемой жидкости.

XV

Трехмерное пространство тоже характеризуется в каждой точке мерою кривизны, причем делается быстрый переход, отнюдь геометрически не обоснованный, что как двухмерное пространство может быть искривленным, так же —и трехмерное. Чаще всего обсуждения неевклидовских пространств и ограничиваются областями двухмерными. Когда же подвергается обсуждению и пространство трехмерное, то кривизна его вводится лишь формально–аналитически, как некоторое выражение дифференциальных параметров и не имеет ни геометрической наглядности, ни физической уловимости. Остается неясным, что именно должен сделать физик, хотя бы в мыслимом опыте, чтобы иметь случай так или иначе высказаться о кривизне изучаемого им пространства. Отвлеченно геометрически кривизна пространства должна выражаться искривлением прямейших, т. е. кратчайших, или геодезических, линий. Но, как разъяснено выше, физик, оставаясь со всеми своими инструментами, и даже со всеми своими наглядными представлениями в пределах этого самого трехмерного мира и подвергаясь, быть может, той же деформации, что и исследуемая геодезическая [линия], по–видимому, не имеет способа непосредственно убедиться в искривленности прямейшей. Понятие, которого не хватает при обсуждении неевклидовских пространств, однако, легко может быть построено, если обратиться к предыдущему. Это понятие есть относительное изменение емкости пространства.

Все дело в том, что одно и то же геометрическое тело, при разной кривизне пространства, будет иметь и разную емкость. Изменение этой емкости, отнесенное к единице объема, будет измерять кривизну трехмерного пространства. Более точно к пониманию меры кривизны можно подойти так:

Представим[68] себе тетраэдр, наполненный несжимаемою жидкостью. Пусть ребра этого тетраэдра гибки, но не растяжимы, и всегда натягиваются, т. е. суть прямейшие; грани же этого тетраэдра будем представлять себе способными растягиваться и сжиматься. Сумма телесных углов этого тетраэдра равна 4π, т. е. четырем прямым телесным углам. Представим себе теперь, что наш тетраэдр перенесен в неевклидовское пространство. Тогда он деформируется: его ребра пройдут по геодезическим, грани станут плоскостями этого нового пространства. Следовательно, телесные углы изменятся, и сумма их уже не будет 2π, а потому изменится и объем тетраэдра. Следовательно, содержащейся в нем жидкости станет теперь либо слишком мало, либо слишком много; этот избыток, понимая его в алгебраическом смысле, зависит от степени деформации тетраэдра, следовательно — от избытка суммы телесных углов деформированного тетраэдра над 4π. Но, с другой стороны, деформация тетраэдра и все вытекающие отсюда последствия зависят от степени искривленности данного пространства, и, следовательно, относительное изменение емкости тетраэдра характеризует кривизну пространства.

Можно высказать, таким образом, теорему, аналогичную теореме Гаусса:

Тут dbз есть элемент объема, /Г3 — кривизна трехмерного пространства, 2р3 — сумма телесных углов тетраэдра, интеграл же распространяется на весь объем тетраэдра. Это значит: избыток суммы телесных углов над 4π, который может быть назван гиперсферическим избытком, накапливается в тетраэдре каждым элементом его объема, но в различной степени; интенсивность этого накопления в каждом месте характеризуется мерой кривизны.

Итак, кривизна пространства тут понимается как удельная емкость пространства данной точки. Написанное соотношение дает по–прежнему:

где К3 есть среаняя кривизна пространства внутри тетраэдра.