Личность и Абсолют

1. Под алгебраическим числом понимается корень уравнения

а0хn+а1хn–1 + …+аn–1х+ап=0,

коэффициентами которого являются рациональные числа. После элементарного преобразования это уравнение может быть превращено в уравнение с целыми коэффициентами. Поэтому в определении алгебраического числа можно говорить и об уравнении с целыми коэффициентами. Если все коэффициенты уравнения суть числа целые, а коэффициент при хn равен, кроме того, еще и единице, то корень такого уравнения называется целым алгебраическим числом; если нет этого второго условия, то мы имеем дробное алгебраическое число.

2. Как понять это математическое определение, которое, как вся математика, блещет чрезвычайно резким формализмом, не позволяющим философской мысли даже пошевельнуться? Если данное число удовлетворяет тому или иному уравнению, то что это значит? Что такое прежде всего само уравнение? Оно говорит нам о ряде действий, которые необходимо произвести над каким–нибудь числом, чтобы получить другое число. Какие же это действия? Уравнение показывает, что это прежде всего обычные четыре «арифметические» действия, а затем т. н. алгебраические действия, т. е. возведение в степень и извлечение корня (в которых, конечно, нет ничего алгебраического и которые относятся все к той же арифметике). Другими словами, левая часть уравнения есть попросту определенная арифметико–алгебраическая функция корней уравнения. Эта функция, оказывается, равняется целому (или, что то же, рациональному) числу. Другими словами, какие бы арифметико–алгебраические операции мы ни производили над целым числом, т. е. какую бы алгебраическую функцию ни брали от этого числа, мы можем прийти только к целому числу. Алгебраическое число есть такое число, любая алгебраическая функция которого есть целое число. Произведя любое из шести арифметико–алгебраических действий над данным числом, мы всегда можем получить целое число. Если даже мы имеем иррациональное число, мы всегда можем составить такое уравнение, т. е. произвести ряд таких действий над этой иррациональностью, чтобы прийти от этой иррациональности к целому числу.

Но что же это значит? Это и значит, что в данном случае мы рассматриваем число не само по себе, но как потенцию возможных действий над ним, как потенцию всех его инобытийных судеб. По данному числу, если оно алгебраическое, мы уже сразу видим, что над ним можно производить любые арифметико–алгебраические действия и оно не выйдет за пределы своей общей арифметико–алгебраической категории. Реально вовсе и не обязательно производить над ним эти действия, и потому в нем—только потенция его инобытийных судеб. Но эта потенция здесь вполне определенная; это потенция рациональности или даже целости. Всякое алгебраическое число, включая иррациональность, является потенциально целым числом. Если мы имели бы какой–нибудь √3, то стоит эту иррациональность возвысить в квадрат, как мы получаем самое обыкновенное целое число «3». Таким образом, даже иррациональность, если она—алгебраическая (а ниже мы увидим, что существуют и не алгебраические иррациональности), потенциально есть не что иное, как целое число. Правда, из всякого целого числа при помощи тех или иных арифметикоалгебраических операций можно, наоборот, получить иррациональные числа. Но тогда нужно сказать, что целость, рациональность и иррациональность представляют собою некую единую область, смысловая печать которой лежит на каждом числе, входящем в эту область. Каждое число несет с собою потенцию этой общеалгебраической области; и оно не может выйти за пределы той судьбы, которая уготована ему в этой области.

3. а) Зададим себе вопрос: в чем же заключается это единство всей алгебраической области? Каков принцип этой «алгебраичности»? Заметим, что при таком широком понимании алгебраичности сюда войдут и все операции над комплексными числами, потому что операция — 1 входит в общеалгебраические операции решительно на тех же самых общих основаниях. Правда, тут не будет фиксироваться спецификум самого этого математического феномена i или a+bi, но все действия над i войдут в алгебру, очевидно, на общем основании, т. е. в смысле обычных же арифметико–алгебраических действий. Итак, в чем заключается принцип самой алгебраичности в этом контексте? Можно даже попросту сказать: все типы числа, которые мы до сих пор рассматривали, включая нуль и бесконечность, тоже, очевидно, входят в эту алгебраическую область. Все они есть теперь для нас нечто общее, что мы называем алгебраическим (хотя все это по существу, как мы знаем, есть чистейшая арифметика). В чем же принцип этой «алгебраичности»?

b) Этот принцип, вообще говоря, есть принцип сводимости числа на то или иное число натурального ряда, на то или иное целое число. Но в чем заключается эта сводимость? Она заключается в применении тех или других из шести арифметико–алгебраических действий. В чем же общцй принцип этих действий? Ниже, в специальном отделе, мы подвергнем эти действия подробному анализу. Сейчас же нам важно только то одно фундаментальное обстоятельство, что всякая операция выводит данное число из его уединения, приобщает его к тому или иному инобытию, и что арифметические операции различаются между собою только законом приобщения числа к этому инобытию. Мы увидим (§ 116), что, если это приобщение происходит по типу самотождественного различия, мы получаем сложение и вычитание; если по типу подвижного покоя, то получаются умножение и деление; и, наконец, если по типу бытия–небытия (т. е. по типу алогического или органического становления), то получаем возведение в степень и извлечение корня. Всем этим операциям обще то, что они берут к данному числу его инобытие не во всяком смысле, но инобытие как таковое, инобытие как принцип, неразвернутое инобытие, только самый факт инобытия, не входя во внутреннюю жизнь этого инобытия и не приобщая этой внутренней развернутости инобытия числа к самому числу. Что такое сложение и вычитание? Сложение и вычитание сопоставляет данное число с другими числами, т. е. с фактом существования других чисел, а затем категория самотождественного различия, примененная ко всему ряду этих сопоставленных чисел, и приводит нас от самих этих чисел к их сумме или разности. Что такое умножение и деление? Умножение й деление сопоставляет перед нами несколько чисел, т. е. указывает на факт существования таких–то чисел, а потом категория подвижного покоя, примененная к этому ряду чисел, заставляет последовательно одно число переноситься в сферу другого числа и воспроизводиться в нем, и мы получаем произведение или частное. Точно так же и в остальных двух действиях алогическое становление (совокупное функционирование бытия и небытия) заставляет одно число повториться целиком в каждой своей части и тем самым превращает два инобытийно противостоящих числа (напр., основание и показатель степени) в органически спаянную целостность, где одно число повторило себя самого по закону другого числа.

Так или иначе, но везде мы имеем здесь 1) число и 2) его инобытие, причем 3) это инобытие дано не развернуто, но лишь как принцип, т. е. оно имеет здесь единственную функцию—выставить напоказ самый факт существования тех или других инобытийных чисел. Это проще всего в сложении: инобытие действует только в том единственном смысле, что оно кроме одного числа, называемого теперь слагаемым, устанавливает факт другого числа, получающего название слагаемого. Так и во всех других действиях.

с) Следовательно, как же мы теперь должны понимать принцип «алгебраичности» в изучаемом нами контексте? Как принцип сводимости данного числа на целое число он оказывается не чем иным, как принципом сопоставления данного числа с его инобытием в простейшем акте полагания этого инобытия. Это инобытие могло бы быть дано не только как простейший акт полагания. Последний мог бы тут развернуться в становящийся, в ставший и даже в выразительный акт полагания. Но в алгебраическом числе этого нет. Алгебраическое число предполагает просто инобытие как годай принцип, без всякой его развернутости. Отсюда и предопределенность всякого числа быть сводимым на целое число.

4. Теперь мы можем и более сознательно отнестись к тому, что такое алгебраическая иррациональность. Поскольку она предполагает в качестве своего .инобытия только те или иные простейшие акты полагания, т. е. поскольку она сводима к целости и может быть из нее получена, постольку единственным источником алгебраической иррациональности может быть только операция извлечения корня. Когда мы извлекаем неизвлекающийся корень, то мы ведь ничего иного не делаем, как просто известным образом сопоставляем два целых числа, и больше Ничего. Следовательно, даже в случае иррациональности инобытие действует не больше как только выставление другого целого числа, инобытийного к данному. Алгебраическая иррациональность и есть не что иное, как образ соотношения двух целых чисел. Становление, необходимое для структуры этой иррациональности (т. е. бесконечное количество десятичных знаков при извлечении «неизвлекающегося» корня), действует здесь как таковое, без всякого принципиального усложнения и расширения; оно реально есть сила, выставляющая один за другим эти десятичные знаки, и притом абсолютно одинаковая в каждом таком знаке. Оно—то ровное поле, на котором бесконечно возникают все более и более мелкие дроби, стремящиеся к недостижимому пределу; и это поле одинаково равнодушно ко всем отдельным моментам этого бесконечного процесса. Иррациональность с таким алогическим становлением в основе мы и называем алгебраической иррациональностью.

5. Что же теперь сказать по поводу общности этого «алгебраизма» для всех изученных нами типов числа? Раз мы нашли во всех них что–то общее, какой–то один единый принцип, то выставить и формулировать этот принцип—это и значит уже выйти за пределы каждого, такого типа, а следовательно, и за пределы всех этих типов, взятых вместе. Принцип «алгебраичности» было бы нецелесообразно формулировать в связи с тем или другим отдельным типом числа, раз этот принцип остается тем же самым и для всех других типов. Теперь же, изучивши все относящиеся сюда отдельные типы, мы смогли выставить и общий принцип их структуры. Но это значит [и] конструировать новый тип числа, в отношении которого все прежние типы числа будут только частным случаем. В нем не будет никаких иных типов числа, кроме тех, которые исследованы нами раньше. Это будут все те же самые положительные и отрицательные, целые и дробные, рациональные и иррациональные числа, все те же нуль, бесконечность и мнимость. Однако в этом новом общем типе будут представлены не они сами, а только их общий конструктивный принцип, а именно сводимость на целое или неразвернуто–ординарная инобытийность. Это и есть спецификум т. н. алгебраического числа, математически определяемого как корень уравнения с целыми коэффициентами. Этот спецификум «корень уравнения с целыми коэффициентами» в философском раскрытии является не чем иным, как принципом числа, потенциально предполагающим свое неразвернуто–ординарное алогическое становление.

6. Однако в этом нашем логическом анализе алгебраического числа может крыться одна неясность, которую необходимо сейчас же устранить. Алгебраическое число, сказали мы, есть число, хранящее в себе потенцию целого числа. Вместе с тем алгебраическим числом мы называем такое, которое отображает в себе свое неразвернутое (так сказать, одномерное) инобытие. Эти два определения, по–нашему, тождественны. Но пожалуй, их тождественность еще не вполне ясна из предыдущего. Тут необходимо обратить внимание на то, что одномерность инобытия есть ведь попросту единство становления, или, другими словами, единообразие его направления. Наличие такого инобытия в недрах числа обеспечивает возможность для него изменяться в прямо противоположные стороны. Если данное число мыслится полученным в результате той или другой арифметической операции (или определенной комбинации этих операций), то наличие в нем его одномерного инобытия есть не что иное, как возможность произвести над ним действие, обратное тому или тем, которые над ним производились. Если число было суммой двух других чисел, то наличие в нем одномерного инобытия обеспечивает возможность произвести из него вычитание одного из двух этих других чисел. Благодаря этому всеобщему принципу можно положительное число превратить в отрицательное и обратно, целое—в дробное и обратно, рациональное—в иррациональное и мнимое и обратно. Но так как основой всяких вообще операций является обыкновенный счет по натуральному ряду, т. е. по всем возможным целым числам, то и возникает потребность говорить о числах, так или [иначе) сводимых к целому числу. Однако для этого сведёния требуется только наличие в данном числе одномерно–инобытийной потенции. Такое инобытие действует просто как сила, выставляющая новые числа в отношении данного, причем эти числа обеспечивают изменяемость данного числа в самых разнообразных, и в особенности в противоположных, направлениях. Максимальное изменение, которое тут может произойти с числом, — это вовлечение его в стихию чистого становления, но последнее тут всегда дано именно в чистейшем, беспримесном виде, как голый принцип, так что рождающаяся здесь иррациональность есть только результат извлечения корня.

Итак, сказать ли, что число сводимо к целому числу, или сказать, что оно хранит в себе одномерно–инобытийную потенцию, — это действительно есть одно и то же.

7. Так как мы рисуем сейчас алгебраическое число как некий общий тип числа, то нам нет нужды входить в рассмотрение того, что в математике называется алгебраической областью или алгебраическим полем (его называют также алгебраическим телом), хотя только эта отрасль математики показала бы нам подробно структуру алгебраических чисел. Мы не будем здесь делать этого, тем более что «арифметической теории алгебраических чисел» нам еще придется коснуться в своем месте.