Личность и Абсолют

Для полного синтеза необходимо полное исчерпание как всего категориального содержания алгебраичности, так и всего категориального содержания трансцедентности—это возможно не по категории ставшего, но по категории выражения. Можно ли сказать, что то и другое исчерпано в комплексном представлении мнимой степени трансцедентного? Конечно, нет. Алгебраичность есть потенция целого. Следовательно, потенция целого должна войти в наш синтез. Тем не менее комплексная величина представляется нами на плоскости, т. е. она берет только один из возможных элементов пространства и не берет его целиком. Правда, поскольку в алгебраическом числе речь идет не о целости как таковой, но о потенции целости, вовсе не обязательно фиксировать какое–нибудь определенное пространство и отбрасывать все прочие. Тут необходимо дать принцип перехода из одного измерения в другое, не ограничивая себя никаким заранее данным количеством измерений. С другой стороны, трансцедентность есть эманативная энергия инобытия, становления. Осуществлено ли это в комплексном числе? Тут дана только «двумерная», так сказать, энергийность, поскольку с вещественной точкой вещественной прямой соотнесена та или другая точка плоскости. Ясно, что становление тут хотя и является становлением становления, но оно не уходит в бесконечность становлений, как того требовала бы трансцедентная энергийность. Следовательно, и с этой стороны мнимая степень трансцедентности не есть полный диалектический синтез числа алгебраического и трансцедентного.

Разумеется, вовсе [не] необходимо фиксировать всю бесконечность измерений и всю бесконечность становлений. Необходимо только показать, как вообще мыслится в этом случае переход от одного измерения к другому и от одного становления к другому и как вообще мыслится та или иная целость измерений и становлений. Все же, однако, это не осуществимо средствами простых комплексных чисел и требует нахождения новой математически–логической категории.

2. Проще всего это мы сделаем так. Вспомним, что в диалектике не только антитезис является отрицанием тезиса и введением инобытия к нему, но и синтез есть отрицание антитезиса и введение нового инобытия к нему. Если это инобытие правильно подобрано, то оно и вернет нас к тезису, который ведь и есть не что иное, как отрицание отрицания. Комплексное число характеризует определенным образом направленную величину, или вектор (вспомним: вещественная и мнимая часть есть ведь только два слагаемых вектора). Следовательно, необходимо еще инобытие этого вектора или другой такой же вектор. Оба вектора должны быть чем–то единым. Тут–то и кроется подлинный синтез, который создаст нужную нам категорию выражения.

Когда мы имеем а–b bi, мы рассматриваем с точки зрения вещественной прямой—плоскость. Введем еще ряд таких же единиц мнимости: j2=k2 = I2 = — 1. Пусть с нашей прямой а мы рассматриваем уже не плоскость, а пространство. Это значит, что мы должны выйти за пределы нашей комплексной плоскости, т. е. должны нашу новую мнимость j направить по перпендикуляру не к прямой а, но ко всей плоскости a+bi. Допустим, что мы дальше хотим наблюдать судьбу и самого трехмерного пространства, т. е. смотреть куда–то в четвертое измерение. Тогда еще новая мнимость к направит наш взор и в эту сторону, и наша прямая а станет носить на себе значимость четырехмерного пространства. И т. д. и т. д. Имея такое усложнение комплексов, мы уже реально обладаем и потенцией абсолютной целости, о которой говорило нам алгебраическое число, и всей бесконечностью пронизывающих друг друга становлений, о которой нам вещало число трансцедентное. Здесь уже решительно всякое становление из тех, которыми богата трансцедентность, превращается в фигурную выразительность, в «направление», в «измерение», понимаемое так конкретно, что его можно отождествить даже с соответствующими геометрическими образами. И здесь мы действительно получаем ту принципиальную числовую целость, которая дает нам представление о наглядно зримой числовой комбинации.

Это и есть т.н. гиперкомплексное число.

3. а) Нужно сказать, что еще Гаусс, и притом еще в докторской диссертации 1799 г., предположил для некоторых уравнений необходимость корней не вещественных и не комплексных, но более сложных, о свойствах которых сам Гаусс, однако, отказался высказать какоенибудь суждение. В начале 40–х годов к учению об этих новых числах пришли одновременно два математика, Г. Грассман и В. Гамильтон. Первый дал философско–математическое учение о многообразиях, в отношении которых геометрия должна быть только частным случаем; его два сочинения — «Учение о линейном протяжении» (1844 г.) и «Учение о протяжении» (1862 г.) [904]. Гамильтон еще в 30–х годах обобщал комплексные числа в том смысле, что изучал соотношения векторов в пространстве на манер соотношения векторов на плоскости, существовавшего для обычных комплексных чисел. В 40–х годах эта разработка продолжилась, и в 1853 г. вышло большое сочинение «Lectures on quaternions», где была дана теория т. н. кватернионов, т. е. комплексных чисел с четырьмя единицами (одной вещественной и тремя мнимыми), после чего мы имеем еще «Elements of quaternions» (1866) [905]. В дальнейшем кватернионами много занимались англичане, среди которых надо указать Моргана, Кэли, Сильвертра, Клиффорда и .др. Кватернионы получили развитие в том рмысле, что их стали привлекать для изучения взаимоотношения пар векторов в пространстве; возникли т. н. бикватернионы [906]. Отсюда возникло и т. н. винтовое исчисление [907].

b) В настоящее время эта теория гиперкомплексных чисел разрабатывается в двух науках. Во–первых, можно брать такие мнимые единицы, произведение которых относится к тому же самому классу Мнимостей, так что каждая единица является здесь не больше, как результатом линейного преобразования другой. И можно, во–вторых, иметь в виду такие единицы, произведение которых создает новые неприводимые единицы. Вслед за античными греками первое учение можно назвать линейными алгебрами и второе—всеобщей алгеброй.

Мы не станем входить в анализ этих дисциплин, а только ради образца коснемся кватернионов, входящих в первую из них, в линейную алгебру.

4. а) Как показывает самое название, в кватернионе мы имеем дело с четырьмя единицами. Первой единицей здесь является вещественная единица, как и в обыкновенных комплексных числах. Три остальные единицы—Мнимые с теми или иными коэффициентами; по Гамильтону, они обозначаются как / и к, и весь кватернион имеет такой вид:

q = d+ia+jb + kc.

Вещественная единица и операции с нею ничем не отличаются от обычных вещественных правил, так что

12 = 1, i*1=1*i=i, j*1=1*j=j, k*1=1*k=k

Что же касается мнимых единиц, то здесь сходно с обычными комплексными числами только общее их определение, т. е.

i2=j2=k2=-1