Личность и Абсолют

В основу этой диалектики положен принцип числового типа как принцип инобытия числа, понимая под бытием натуральный ряд чисел. Отсюда—рассмотрение числового типа с точки зрения разных видов инобытия—внешнего, внутреннего и внутренно–внешнего, что зафиксировано в вертикальных колонках схемы. С другой стороны, материал данного «бытия» (натуральный ряд) рассматривается и с общедиалектической точки зрения, которую мы понимаем как триаду, или как тетрактиду, или как пентаду (о возможной многомерности этих построений говорится выше, в § 31). В данном случае, если понимать рассматриваемое здесь инобытие натурального ряда чисел в качестве перво–принципа всех типов числа, то у нас применяется пентада, образец и первообраз которой мы имеем уже в общей теории числа (§ 26). Существенно важен также особый переход от вневыразительных типов числа к выразительным, разъясненный у нас в § 35. Самым важным является здесь то, что, в то время как девять вневыразительных типов представляют собою две стороны диалектической триады (одна—как горизонталь, другая—как вертикаль схемы), выразительная триада является вполне самостоятельным целым, вырастающим на обобщении всех[911] девяти вневыразительных типов, а вовсе не так, как может внешне подсказывать схема, т. е. вовсе не так, чтобы каждая выразительная категория соответствовала только своей вертикали.

2. а) Предлагаемая диалектика типов числа является диалектикой еще и в том смысле, что при нерушимой взаимосвязи всех категорий (вытекающих, как это и требуется в данном случае, из одного и единственного перво–принципа) она требует полной специфичности каждого типа и полной несводимости его ни на какой другой тип. С этой точки зрения общеизвестные попытки свести все типы числа на целое и положительное число, наиболее резким образцом которых может служить учение Кронекера, заведомо обрекаются для нас на полный неуспех. JI. Кронекер сводит всю математику на теорию натуральных чисел и целых целочисленных функций от неопределенных символов и, v9 w… при конечном числе операций[912]. В результате все эти ухищрения сводятся только к новому математическому правопщанию, так как фактически нет, конечно, никакой возможности избежать самих логических категорий, лежащих в основе каждого типа. Кронекер рассматривает главнейшие типы числа при помощи т. н. функциональных сравнений. И получается: чтобы избежать слова «минус» в формуле 7—9=3—5, ему надо пользоваться таким функциональным сравнением: 7+9χ=3 + 5х (mod х+1). Но ведь это значит, что обе сравниваемые здесь величины при делении на х+1 имеют один и тот же остаток. А чтобы убедиться в этом, необходимо реально произвести эти деления, что потребует и употребления операции вычитания. Следовательно, тут мы имеем дело только с иным правописанием, с иными знаками обозначения, а сущность обозначаемого осталась совершенно незатронутой.

b) И для чего понадобилась такая теория? Если Кронекер хочет показать исходный пункт всякого рассуждения о числе, то и без всяких доказательств ясно, что основой всей математики является простой счет, т. е. система натурального ряда (почему мы и называем этот последний бытием непосредственной сущности числа). Не умея считать, нельзя вообще высказать никакого суждения о числе. Если Кронекер хотел дать более строгую и более экономную систему обозначений, то всякому ясно, что употребление плюсов, минусов, знаков дроби, показателей, радикалов и т. д. несравненно экономнее тяжелых обозначений через функциональные сравнения. Эти последние, кроме того, имеют гораздо более широкое значение, которое совершенно излишне для простых категорий отрицательности, дробности и пр. Наконец, если упор на натуральные числа имел целью не просто указать исходный пункт самого понятия и не просто дать другое обозначение для того же самого предмета, а имел целью сделать ненужным самые понятия дробности, иррациональности и т. д., то это можно квалифицировать только как нелепость, изобличающую себя при первом же своем проявлении. Упование на то, что все числа можно «свести» на целые числа, вредно еще и тем, что оно до известной степени преграждает анализ тех категорий, которые заложены в основе разных типов числа, понимаемых как специфические индивидуальности. Тут надо уметь не столько «сводить» одно на другое, сколько «выводить» одно из другого.

3. Несколько иначе смотрит на дело К. Вейерштрасс, тоже носившийся с идеей сведения всех чисел на целые числа. Правда, Вейерштрасс в этом смысле рассуждает гораздо сдержаннее. Он вовсе не хочет отменять самые понятия разных видов числа и считает, напр., иррациональность столь же реальной для мысли, что и все другие. Не хочет он также и всякие арифметические действия заменять действиями над целыми числами. Насколько можно понять эту теорию, он просто занят психологическими вопросами о том, как мы приходим к представлению о разных типах числа. Если это действительно так, то уже по одному этому учение Вейерштрасса не должно было бы обсуждаться в нашем сочинении. Но ясно и то, что Вейерштрассу меньше всего хотелось быть тут психологом. Поэтому—скажем несколько слов о Вейерштрассе.

О целом числе Вейерштрасс рассуждает не хитро. Вокруг нас мы находим явления, говорит он, которые обладают общими признаками. В каждой такой группе явлений мы различаем несколько единиц. Отсюда—понятие о целом числе. Взявши два таких числа, мы можем взаимно сопоставить входящие в них единицы. Когда эти элементы друг другу соответствуют, мы говорим, что числа равны:; когда в одном числе остаются лишние элементы, мы говорим, что оно больше другого, а это последнее—меньше. Здесь знаменитый математик говорит, конечно, пустяки: целое число там, говорит он, где оно целое.

О дробном числе—рассуждение несколько сложнее. Кроме «главной единицы», говорит он, существуют и многие другие единицы — двойка, тройка, десятка, сотня, миллион, это тоже некоторого рода единицы. Покамест мы берем числа, составленные из «главной единицы», мы можем иметь только целые числа. Но, вводя другие единицы и сравнивая новые единицы со старыми, мы получаем представление о дробных числах. По этому поводу можно только удивиться, почему нс появляется представление о дробной части, когда мы имеем одну цельную группу нескольких предметов, и почему для этого необходим переход к другой группе или к другим единицам. Кроме того, назвать десятку единицей можно только при том условии, что уже имеется представление о целом и дробном, так что здесь Вейерштрасс утверждает только то, что дробное число возникает тогда, когда оно дробное.

Отрицательное число возникает, по Вейерштрассу, тогда, когда кроме основного элемента е вводится «противоположный» элемент е' удовлетворяющий равенству а+е+е'=а (где а состоит только из элементов e). Отсюда е+е' = 0, и если одну из этих величин назвать положительной, то другая будет отрицательной. Тавтологичность этого определения не нуждается в комментарии.

Немногим лучше обходится Вейерштрасс с иррациональными числами. Он их сводит на целые числа так. Мы можем, говорит он, брать агрегаты чисел, состоящие из главной единицы и из разных дробных частей единицы. Число этих разных групп чисел может расти до бесконечности. Допустим, что у нас имеется по конечному числу элементов в каждой группе, а самих этих групп—бесконечное количество. Тогда и получится иррациональное число. В самом деле, пусть такими группами у нас будут дробные части единицы—десятые, сотые, тысячные и т. д. Если этих групп у нас будет бесконечное число, но в каждую группу будет входить только конечное число элементов, то это и даст нам иррациональное число. Проще говоря, Вейерштрасс хочет сказать только то, что иррациональное число есть дробь с бесконечным числом десятичных знаков. Если на основании этого он думает, что иррациональность сводится на целое число, то это есть только подмена логического определения письменными знаками, которые его обозначают. Иррациональность, если ее брать как таковую, в чистом виде, ни в каком смысле не сводима на цельность. Можно, конечно, понимать ее как целое, но в таком же точно смысле окажутся целыми и все дроби, все трансцедентные и гиперкомплексные числа, точно так же, как все их можно назвать единицами. Называет же Вейерштрасс единицами двойки, тройки, десятки, половины, трети, сотые части и т. д. Но если это не диалектика (в том смысле, как мы говорили в § 23 о вездеприсутствии одного и того же перво–принципа единичности)—а в диалектике Вейерштрасс нисколько не повинен, — то это просто игра словами.

4. Наконец, слабым достижением надо считать определение типов чисел как пары целых чисел. Это представление, восходящее к Гамильтону, взятое в чистом виде, очень недостаточно вскрывает сущность данного типа числа, являясь обычной математической тавтологией, хотя у самого Гамильтона в связи с его векторными представлениями это имело, несомненно, гораздо более глубокое значение.

В учении о числах как о паре целых чисел указывают обычно условия равенства и неравенства пар и способы действий над ними. Если мы имеем в виду дроби, то пары я, b и я', Ъ' равны здесь между собою только тогда, когда ab = a'b'. Не нужно особенно напрягать свои умственные способности, чтобы догадаться, что здесь попросту имеется в виду равенство в пропорции произведения крайних и средних. Другими словами, здесь только по другому правописанию записана та святейшая истина, что дроби равны, когда равны отношения их числителей и знаменателей. Но никакое новое правописание, конечно, не создаст логического определения, если оно не получено из другого источника.

Точно таким же характером обладает «условие равенства пар» для отрицательного числа. Тут пары а, b и а', b' будут равны при условии a+b' — а' + b. То же самое в комплексных числах и пр. Везде тут— словесный оборот вместо логического построения.

5. В традиционном математическом учении о типах числа поражает отсутствие всякой систематики и методологии. Обычно, желая перечислить решительно все типы числа, говорят, что каждое действие имеет для себя обратное действие, и когда это последнее прямо невыполнимо, то «условились» — де (как будто бы можно было не условиться?) ввести новые понятия—отрицательного, иррационального и мнимого числа. Этим и кончается вся «система». Что единица, нуль и бесконечность есть совсем особые числа, со своим особым влиянием на все прочие числа, об этом в данной «системе» не говорится ни слова, хотя своеобразие этих чисел бьет в глаза на каждом шагу. Всякому ясно, что это не просто разные числа, но разные типы числа, разные категории числа. Почему же о них нет ни слова в указанной «системе»?

О прочих типах числа, хотя они непосредственно связаны с указанной «системой», говорится весьма неохотно и большею частью только там, где уже сам материал хватает математика за горло и требует введения новых чисел. Как возрадовались бы многие математики, если бы удалось выкинуть из низшей геометрии число π. Но, оказывается, без него невозможно решить почти ни одной задачи из теории круга и круглых тел. И вот волей–неволей вносят это π в геометрию. Но как вносят! Вносят, конечно, чисто вычислительно, не давая никакого представления о нем как именно об особом типе числа, а не просто о числе наряду с прочими—напр., иррациональными—числами. О е вяло говорят в низшей алгебре, немного больше—в анализе (потому что без него нельзя было бы понять многих самых элементарных форм дифференцирования). Но где же это е изучается как таковое? Математики не знают даже, в какую науку можно было бы отнести теорию этого е, не то в алгебру, не то в анализ. А то, что это есть чистейшая арифметика, большинство, пожалуй, даже удивится. Но вот без е и π никуда двинуться нельзя, а без остальных трансцедентностей можно двигаться очень далеко. И что же? Результат очень простой: нет почти никакой систематической теории трансцедентностей. О кватернионах я уж и совсем не говорю. Хотя это наиболее зрелый продукт числового типа вообще, они, можно сказать, крайне непопулярны в современной математике (несмотря на значительные удобства, которые они приносят с собою); и тоже неизвестно, арифметика ли это, алгебра или анализ.

Нечего и говорить о том, что предложенное выше диалектическое построение числовой типологии, вероятно, содержит много изъянов, недостатков и, может быть, даже просто ошибок. Однако это только первый опыт. После него другие смогут дать уже и более совершенные построения.