Личность и Абсолют

Если имеется детерминант второго порядка:

a11, a12

a21, a22

то он равен a11, a12 — a21, a22 Здесь число, равное детерминанту, состоит из алгебраической суммы двух произведений, из которых оба имеют первыми значками основную перестановку, т. е. (1, 2), а вторыми значками—две возможные тут перестановки из двух элементов—(1, 2) и (2, 1), причем второе произведение как содержащее инверсию во вторых значках (2, 1) взято с минусом. То же самое легко усматривается на детерминанте 3–го порядка, который, очевидно, будет равен следующей алгебраической сумме произведений:

a11a22a33 + a12a23a31 + a13a21a32 — a11a23a32 — a12a21a33 — a13a22a31

Таково обычное определение детерминанта.

b) Что же мы тут усматриваем с точки зрения категориальной структуры? Мы находим прежде всего, что некое число (которому равен детерминант) составлено здесь из некоей системы чисел, рассмотрено в свете этой системы, вычислено при ее помощи. Значит, уже по одному этому детерминант вполне правильно отнесен нами к категории ставшей сущности арифметического числа. Всматриваемся, что же это за система чисел и как она составлена. Оказывается, наше число представлено здесь как алгебраическая сумма некоторых произведений. Это значит, что наше число взято нами в своем количественном содержании; и то, что мы получаем в результате применения действующей тут системы чисел, есть непосредственное количество. Другими словами, здесь мы имеем структуру того же типа, какую имели при непосредственном вычислении арифметического ряда (напр. в арифметической прогрессии), только что отдельные слагаемые составлены здесь по более сложному закону, чем в обыкновенных арифметических рядах. Остается, следовательно, учесть закон составления этих слагаемых, и мы исчерпаем категориальную структуру детерминанта.

Что же это за закон? Возьмем ради простоты рассуждения детерминант 3–го порядка. В этом случае наши произведения будут состоять каждое из трех сомножителей, которые будут составляться так. Сделаем все перестановки из трех элементов. Их будет шесть:

1, 2, 3

2, 3, 1

3, 1,2

1, 3, 2

2, 1,3

3, 2, 1.

Примем за основную перестановку первую — 1, 2, 3. Сделаем так, чтобы эта основная перестановка имела значение во всех шести перестановках, чтобы все они были на нее нанизаны. Тогда и получаем закон составления этих слагаемых из произведений:

11,22,33

12, 23, 31

13, 21, 32

11,23,32

12, 21, 33

13, 22, 31.