Личность и Абсолют

4. Но особенно важно для понимания матрицы и детерминанта еще одно обстоятельство, играющее большую роль в математической практике.

a) Именно, общая категориальная основа изучаемой области арифметики определяет собою одну особенность, на которую мы не указывали и которая получит свое настоящее значение в алгебре. Дело в том, что ставшее, полагая твердые границы для становления, впервые реально осуществляет диалектику постоянства, неизменности. Когда мы имеем дело с числом как таковым (натуральные числа, разные типы числа), мы хотя и имеем перед собой нечто устойчивое, но эта устойчивость тут еще не положена диалектически; она существует в числе вместе со всеми другими категориями. Также и в отношении арифметических действий нужно сказать, что хотя они и существуют благодаря становлению, т. е. благодаря некоторого рода движению, действию, изменяемости, но сама изменяемость тут не утверждена специфически. Только когда неизменное–в–себе и изменчивое–в–себе, т. е. бытие и становление, числа и действия, объединятся в одно общее диалектическое обстояние, мы тогда сможем говорить в собственном смысле об изменяемости и неизменности. Другими словами, здесь мы наталкиваемся на бытие, в котором то и другое положено, утверждено. Выражаясь математически, ставшее впервые делает возможным суждение об инвариантности.

Пусть дан тот или иной геометрический образ. Сам по себе он, конечно, неподвижен. Однако, чтобы эта неподвижность была действительно диалектически положена, необходимо, чтобы существовала такая сфера, где эта неподвижность четко противополагалась подвижности. Только тогда из взаимоопределения этих явлений мы получаем источник фиксации того и другого. Именно, пусть наш геометрический образ как–нибудь меняется, испытывает преобразования. Если при этом нечто остается в нем неизменным и мы видим, что именно, то тогда, ясно, неизменное у нас окажется зафиксированным, диалектически утвержденным. И если раньше этот момент был неподвижен в себе, то теперь он уже неподвижен в себе и для себя, что стало возможным только потому, что он предварительно оказался неподвижным для иного. Пусть, например, мы заметили, что при любых увеличениях и уменьшениях радиуса окружности отношение самой окружности к диаметру остается неизменным. Стало быть, это есть некоторый инвариант. Пусть мы имеем два полинома с двумя переменными, и пусть эти последние потерпели некоторое преобразование. Как бы мы ни меняли в этом смысле наши полиномы, оказывается, что, произведя соответствующие вычисления, мы найдем, что некоторая функция коэффициентов наших полиномов остается совершенно неизменной. Она, стало быть, инвариант. И т. д.

И вот спрашивается: если категория ставшего приводит нас к понятию инвариантности, то не имеет ли ближайшее отношение к этому последнему и теория детерминантов и матриц, которая тоже ведь возникла на диалектической категории ставшего?

b) Пожалуй, несколько удивляет то обстоятельство, что теория инвариантов сравнительно слабо связана с детерминантами и матрицами или что по крайней мере эта связь не выдвигается на подобающее место. Нужно прямо сказать, что с диалектической точки зрения связь вариантов с детерминантами и матрицами самая непосредственная, как бы математики ни сводили эту связь на удобство вычислительных схем. Если не входить в подробности, изложенные выше, а взять самый общий признак детерминанта, то ведь это есть совмещение двух слоев—количественно–смыслового и фактически полагающего. Но как раз это совмещение и обусловливает собою указанную выше категорию инвариантности. Самое суждение об инвариантности делается возможным только в то мгновение, когда смысл, перешедший в становление и фактическое осуществление, вдруг остановился и, перейдя в ставшее, в факт, превратился в ту устойчивость, на фоне которой стало доступно судить об изменяющихся моментах. Детерминант и матрица суть именно такие диалектические формы с двойным накладыванием; в них определенное число или система чисел даны как осуществленные при помощи системы чисел, т. е. уже в самом их понятии заложена некоторая инвариантность: неизменное число, являющееся детерминантом, осуществлено в результате некоей процедуры комбинирования чисел, являясь неизменным среди изменчивого. Но тут, в детерминанте и матрице, это отношение неизменного и изменяемого дано только в категориальном виде, т. е. в фиксированном, в застывшем виде, так что изменяемые элементы даны здесь не в процессе своего изменения, но в устойчивом результате этого изменения.

Отсюда само собой делается понятным то, что инвариантная значимость детерминанта и матрицы выяснится только тогда, когда мы заставим их функционировать в какой–нибудь иноприродной среде и посмотрим, как меняется структура и числовое значение этих математических образований в зависимости от воздействия этой среды. 5. Два–три примера из этой области будут нелишними, а) Популярнее всего здесь учение о т. н. линейной зависимости и линейном преобразовании. Линейная зависимость есть не что иное, как обобщение понятия о пропорциональности. Линейным же преобразованием с η переменными называется преобразование такого типа:

Эти (х1… хn) мы можем понимать, во–первых, как разные измерения «-мерного пространства, так что указанное преобразование будет говорить о переходе одного вектора данного пространства в другой вектор того же пространства. Эти же переменные, далее, можно понимать как координаты точки того же пространства η измерений, так что наше Преобразование есть переход от одной точки к другой. Можно, в–третьих, считать, что переменные являются компонентами одного и того же вектора при разной системе координат. Тогда наше преобразование есть преобразование самих координат.

Спросим себя: каково то условие, необходимое и достаточное для того, чтобы т систем с η постоянными находились между собою в линейной зависимости. Оказывается, что в случае когда m≤n, то m систем с η постоянными только тогда линейно зависимы, когда все определители m–го порядка матрицы

равны нулю. Мы не будем отвлекаться доказательством этой теоремы, как оно ни просто, но отметим этот удивительный факт, который, к сожалению, всегда понимается слишком количественно и, так сказать, вычислительно: матрица со своими детерминантами явилась здесь некоторым инвариантом, потому что эти (х1… хn) могли ведь иметь какое угодно значение, но раз составленные из них системы линейно зависимы, то определенная комбинация их всегда равна нулю. Опуская случай m>n (так как здесь системы будут всегда линейно зависимы), укажем на то, что линейная зависимость имеет и вполне реальный количественный смысл, так что указанное матричное условие определяет собою и некоторые геометрические инварианты. Напр., две точки тогда, и только тогда, линейно зависимы, когда они совпадают; три точки тогда, и только тогда, линейно зависимы, когда они лежат на одной прямой; четыре точки —если они лежат на одной плоскости; пять и более точек всегда линейно зависимы. Везде тут будут иметь значение указанная матрица и ее детерминанты.

Если теперь обратиться к линейному преобразованию и обычным порядком составить квадратную таблицу коэффициентов той системы уравнений, которой определяется преобразование (называя ее матрицей преобразования), то окажется, что сумма квадратов элементов каждой строки и столбца равна единице, а сумма произведений соответствующих элементов двух разных строк или разных столбцов равна нулю. Пусть у нас матрица третьего порядка, и пусть ее элементы суть косинусы углов, образованных новыми осями со старыми. Тогда соответственно мы получаем некоторый инвариант при координатных преобразованиях. Допустим, что координаты неподвижны, а движется само пространство как целое. Тогда это преобразование будет определяться все теми же тремя уравнениями и соответствующим определителем (+1). Определитель (—1) будет указывать не только на движение, но и на симметрию относительно начала. Очень важна тут еще и такая теорема: если от переменных χ к переменным х' переходим [с] помощью линейного преобразования с матрицей а и далее к х' с матрицей b, то х' можно и прямо получить из χ при помощи линейного преобразования с матрицей Ъа. Как видим, параллелизм между линейными преобразованиями и матрицами идет очень далеко.

Можно показать что если под инвариантом понимать только рациональные функции координат и коэффициентов (при однородности тех и других), то в этих функциях всегда будет общий множитель, зависящий только от коэффициентов подстановки и всегда являющийся той или другой степенью определителя подстановки. Такие инварианты, как известно, называются относительными, а показатель упомянутой степени носит название веса инварианта. Задаваясь вопросом о нахождении всех таких инвариантов, мы опять сталкиваемся с детерминантами. Пусть, напр., на плоскости имеется несколько точек. Оказывается, что простейшие инварианты в этом.случае можно получить при помощи детерминантов второго порядка, составленных из заданных координат этих точек. Эти детерминанты дают и полную систему инвариантов.

Обладая двумя точками на плоскости: 1, 2, мы получаем основной инвариант в виде двойной площади треугольника с точками 0, 1, 2. А площадь треугольника и есть половина детерминанта, составленного соответствующим образом из кооординат этих точек. Беря большее число точек и разыскивая полную систему аффинных инвариантов, мы найдем, что она состоит из всех их детерминантов. Если остановиться на проективном преобразовании (дробно–линейные подстановки) и ограничиться, напр., опять двумя переменными, т. е. плоскостью, то при абсциссе на прямой х= парах этих переменных детерминант