Личность и Абсолют

2. Усвоивши себе логический состав самого понятия группы, обратимся к примерам группы, потому что только здесь можно вполне ощутительно воспринять то, о чем отвлеченно говорит диалектика понятия.

a) Укажем прежде всего чисто числовые, т. е. в собственном смысле арифметические, группы.

Группой является уже самый обыкновенный натуральный ряд чисел, и притом в разнообразном смысле. Пусть, напр., композицией является сложение. Какие бы два числа из натурального ряда мы ни взяли, их сумма безусловно окажется в том же самом натуральном ряду. Пусть композицией будет умножение. И опять, какие бы два числа ни взять, их произведение все равно принадлежит натуральному ряду. Допустим, что у нас имеется совокупность чисел натурального ряда, обладающая тем признаком, что разность каждых двух чисел относится к этой совокупности. Говорится, что число а сравнимо с числом Ъ по модулю с, если они при делении на с дают всегда один и тот же остаток. При такой точке зрения натуральный ряд чисел разбивается на ряд классов, в каждом из которых содержатся все числа, сравнимые между собою по данному модулю. Если у нас модуль = 5, то мы получаем следующий ряд рядов, или классов чисел:

0, 5, 10, 15 …

1, 6, 11, 16 …

2, 7, 12, 17 …

3, 8, 13, 18 …

4, 9, 14, 19 …

Дальнейшие классы, очевидно, были бы только повторением уже данных, и, следовательно, классов возможно здесь столько, каково количественное значение модуля. Все эти пять классов чисел, на которые разбивается натуральный ряд чисел по модулю 5, образуют собою модуль в широком смысле, или вид группы. Легко увидеть на такой группе применение всех указанных выше моментов определения группы.

Из области чисел возможны и более сложные групповые построения. Так, напр., из теории групп можно вывести малую теорему Ферма.

b) Приведем пример группы функций, а именно рациональных функций. Пусть мы имеем, напр., такие шесть функций:

Простым вычислением убеждаемся, что эти функции являются элементами некоей единой группы, если под композицией понимать получение функции от функции, т. е. подстановку в одну из функций функции другой функции вместо. Точно так же все целые функции комплексного переменного образуют группу, если под композицией понимать опять получение функции от функции: целая функция от целой всегда будет тоже целая.

с) Однако особый интерес представляют геометрические группы. Рассмотрим, напр., группу вращений какой–нибудь плоской фигуры. Возьмем равносторонний треугольник лвс и посмотрим, как его можно вращать так, чтобы в результате вращения он совпадал с самим собою. Если мы перечислим все такие способы вращения, они образуют собою группу вращений. Оказывается, таких способов существует шесть: 1) оставление данного треугольника в покое; 2) поворот вокруг центра на 120°, чтобы в попало в а, С—в в и а—в С; 3) поворот вокруг центра на 240° (или на 120° в обратную сторону), чтобы С попало в а, а—в в и в—в С; 4) поворот на 180° вокруг оси ad; 5) то же вокруг be; 6) то же вокруг cf. Будем понимать под композицией замену двух вращений соответствующим эквивалентом в виде одного вращения. В таком случае нетрудно убедиться, что шесть указанных вращений образуют группу, потому что каждые два из них образуют какое–нибудь третье (напр., соединение вращений 2–го и 5–го дает 6–е).