Личность и Абсолют

c) Но обратим внимание на то, как мы «перемножаем» подстановки. Тут полная аналогия с «умножением» матриц. Можно поэтому всякую группу представить матрично; всякая группа есть в известном смысле группа матриц. Возвращаясь к нашему примеру группы шести рациональных функций, мы можем представить ее изоморфно в матрицах второго порядка так:

То же в виде матриц третьего порядка так:

соответственно таблице Кэли:

Тут мы возвращаемся к данной вначале диалектической дедукции группы из детерминантно–матричных отношений. Ряд матриц связан здесь единым композиционным принципом, скользящим от одного элемента к другому и охватывающим их все вместе. Выразительная природа композиции сказывается именно в этом тяготении одного элемента к другому, в этом смысловом становлении, которое образуется по причине того, что каждый элемент есть «произведение» двух других и все, таким образом, объяты одним взаимным тяготением.

d) Это делается еще яснее, когда мы стараемся осознать обычно практикуемый в теории групп метод циклического представления. Циклом называется такая подстановка, в которой каждый знак заменяется следующим за ним, а последний—первым. При этом совершенно неважно, с какого знака начинать, лишь бы сохранялся указанный порядок. Ничто не мешает и всякую подстановку расположить так, чтобы смена знаков происходила последовательно, как указано только что; или, точнее, всякая подстановка может быть представлена как произведение циклов, не имеющих общих элементов. Следовательно, всякая подстановка, т. е. всякая группа, в этом смысле циклична, и притом однозначно–циклична. Но циклическое расположение наилучше рисует тот момент в композиции группы, который мы именуем выразительно–становящимся. Цикличность по самому своему смыслу есть нечто становящееся. Поэтому она и отражает в себе наилучше выразительную природу группы. Ведь выражение есть именно фигурно–становящаяся, текучая сущность.

e) Наконец, важно знать еще и то, что полная группа всех возможных подстановок данного числа знаков обладает одним специальным свойством. Именно, если под степенью группы понимать число знаков, участвующих в подстановках, то все η подстановок η знаков образуют т. н. симметрическую группу n–й степени. Такова, напр., тройная группа, приведенная выше в виде таблицы Кэли, или четверная, которую еще рельефнее можно выразить так:

Мы видим здесь замечательную симметрию знаков относительно обеих диагоналей таблицы. В теории групп доказывается, что симметрическая группа содержит четных и столько [же] нечетных подстановок. Группа всех четных подстановок л знаков называется полусимметрической, или знакопеременной, группой.

4. До сих пор мы занимались, собственно говоря, только определением понятия группы, мало входя в рассмотрение ее структуры в собственном смысле. Но развитое выше понятие группы со всеми его подробностями в отношении структуры самой группы есть только перво–принцип. Поэтому развитая структура группы должна быть рассматриваема еще с весьма многочисленных точек зрения. Укажем некоторые понятия из теории групп, относящиеся к структуре группы.

a) Структура группы в ее принципе (а не перво–принципе), в ее бытии характеризуется различным комбинированием входящих в нее элементов. Введем необходимейшее понятие подгруппы. Это та группа, все элементы которой входят в другую группу; в отношении последней она и называется подгруппой. Структура группы выявляется проще всего при помощи разложения по модулю. Если Μ подгруппа J, то имеется известное количество элементов А, Б, С, … J таких, что J=MA+MB+MC+ …+MJ. Это значит, что мы компонируем последовательность элементов, составляющих подгруппу Μ со всеми элементами, входящими в но не входящи[ми] в М. Такое комбинирование называется разложением группы J по модулю М, а всякая система элементов А, В,… J называется полной системой вычетов по модулю М. Тут полная аналогия со структурой модуля в узком смысле (т. е. когда композицией является сложение и вычитание), о котором нам уже приходилось упоминать (п. 2а) и о котором еще будет речь в § 126.

Впрочем, если гнаться за диалектической точностью, то к «бытию», или «принципу», структуры группы относится не разложение по модулю, а самый модуль, потому что только он и есть идеальная картина разложения. Самое же разложение, т. е. реальное разложение, предполагает уже некое становление бытия (или принципа), и закон этого становления выражен именно полной системой вычетов. Таким образом, полная система вычетов есть позднейшая стадия; она не только не самое бытие, но даже и не самое становление; она—закон становления, т. е. ставшее.