Общая Биология

В природе существует бактерия Bacillus thuringiensis, вырабатывающая эндотоксин белковой природы, действующий на насекомых. Ген, кодирующий этот токсин, был выделен и встроен в ДНК картофеля. Такой картофель личинки колорадского жука в пищу употреблять не могут. Аналогичным образом удалось получить устойчивые к сельскохозяйственным вредителям трансгенные формы хлопка, кукурузы, томатов и рапса. После внедрения в геном винограда гена морозоустойчивости от дикорастущей капусты брокколи трансгенный виноград стал морозоустойчивым. Эта процедура заняла всего год. Обычно на выведение новых сортов винограда уходит 25—35 лет.

Существенные посевные площади заняты под трансгенные растения в США (68 % мировых посевов трансгенных культур), Аргентине (22 %), Канаде (6 %) и Китае (3 %). В основном выращивают трансгенную сою (62 %), кукурузу (24 %), хлопок (9 %) и рапс (4 %).

Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот, не синтезирующихся в организмах животных. В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т синтезированной микробиологическим путем аминокислоты лизин экономит десятки тонн кормов.

Биотехнология животных. Получение трансгенных животных начинают с создания генетических конструкций, в которых целевой ген находится под контролем промотора, активного в определенной ткани организма, например в клетках молочной железы. Такую конструкцию вводят в оплодотворенную яйцеклетку и помещают животным для вынашивания. Выход здоровых животных пока невелик (менее 1 % эмбрионов), но ученые продолжают исследования. Получены трансгенные коровы, овцы, козы, свиньи, птицы, рыбы.

От 20 трансгенных коров можно получить до 100 кг целевого белка в год. Именно столько белка, применяемого для предотвращения тромбов в кровеносных сосудах, требуется человечеству ежегодно. Для получения необходимого людям белка-фактора свертывания крови (его применяют для повышения свертываемости крови у больных гемофилией) достаточно одной трансгенной коровы.

Актуально создание пород домашних животных, устойчивых к паразитам, бактериальным и вирусным инфекциям. Встраивая гены устойчивости к наиболее распространенным заболеваниям, можно значительно сэкономить на вакцинах и сыворотках (до 20 % от стоимости конечного продукта).

Трансгенных млекопитающих используют в качестве модельных систем для поиска способов лечения наследственных заболеваний человека. На мышах отрабатывают методы борьбы со СПИДом, муковисцидозом, болезнью Альтцгеймера, на кроликах — с онкологическими заболеваниями.

Выводы. В результате применения биотехнологии появились бактерии, растения, животные, которые являются естественными биореакторами. Они продуцируют новые или измененные генные продукты, которые не могут быть созданы традиционными методами скрещивания, мутагенеза и селекции. Кроме того, молекулярная биотехнология дает принципиально новые методы диагностики и лечения различных заболеваний. Однако в ряде случаев рекламируемые перспективы оказываются преувеличенными и не всегда соответствуют реальным возможностям биотехнологии.

Сорта, полученные методами классической селекции, менее впечатляющи, но имеют свои достоинства, они более устойчивы и надежны в использовании. Если классическая селекция остается в естественных природных рамках, то современные технологии, оперируя на уровне клеток, хромосом и отдельных генов, выходят за пределы природных закономерностей. Эти методы используют природные компоненты (клетки, гены и т. д.), но комбинируют их произвольно. Возможные побочные эффекты во многих случаях трудно предсказуемы. Необходимы длительные эксперименты на животных и растениях и серьезные исследования. Известно негативное отношение СМИ и широких слоев общественности в разных странах к продукции молекулярной биотехнологии — генно-модифицированным (ГМ) продуктам. Вместе с тем становится все более понятным, что использование методов ГИ — один из возможных путей обеспечения продуктами питания стремительно возрастающего населения планеты. Для определения возможных границ использования методов ГИ важно разобраться и в нравственных аспектах вторжения человека в мир Божий.

1 • Какие два фермента наиболее важны для ГИ?

~ 2. Для чего нужен метод ПЦР?

3. Каковы основные этапы генно-инженерных работ?

4. Назовите основные направления биотехнологии.

5. В чем достоинство классической селекции по сравнению с