Pavel Florensky History and Philosophy of Art

Представим[68] себе тетраэдр, наполненный несжимаемою жидкостью. Пусть ребра этого тетраэдра гибки, но не растяжимы, и всегда натягиваются, т. е. суть прямейшие; грани же этого тетраэдра будем представлять себе способными растягиваться и сжиматься. Сумма телесных углов этого тетраэдра равна 4π, т. е. четырем прямым телесным углам. Представим себе теперь, что наш тетраэдр перенесен в неевклидовское пространство. Тогда он деформируется: его ребра пройдут по геодезическим, грани станут плоскостями этого нового пространства. Следовательно, телесные углы изменятся, и сумма их уже не будет 2π, а потому изменится и объем тетраэдра. Следовательно, содержащейся в нем жидкости станет теперь либо слишком мало, либо слишком много; этот избыток, понимая его в алгебраическом смысле, зависит от степени деформации тетраэдра, следовательно — от избытка суммы телесных углов деформированного тетраэдра над 4π. Но, с другой стороны, деформация тетраэдра и все вытекающие отсюда последствия зависят от степени искривленности данного пространства, и, следовательно, относительное изменение емкости тетраэдра характеризует кривизну пространства.

Можно высказать, таким образом, теорему, аналогичную теореме Гаусса:

Тут dbз есть элемент объема, /Г3 — кривизна трехмерного пространства, 2р3 — сумма телесных углов тетраэдра, интеграл же распространяется на весь объем тетраэдра. Это значит: избыток суммы телесных углов над 4π, который может быть назван гиперсферическим избытком, накапливается в тетраэдре каждым элементом его объема, но в различной степени; интенсивность этого накопления в каждом месте характеризуется мерой кривизны.

Итак, кривизна пространства тут понимается как удельная емкость пространства данной точки. Написанное соотношение дает по–прежнему:

где К3 есть среаняя кривизна пространства внутри тетраэдра.

Очевидно:

т. е. средняя кривизна равняется отношению гиперсферического избытка, рассчитанного на единицу объема. Делая тетраэдр все меньше и затягивая его около точки, мы заставим сферический избыток, рассчитанный на единицу объема, стремиться к некоторому пределу, и предел этот есть истинная кривизна в точке, около которой сжимается тетраэдр.

Можно пояснить весь этот прием на частном примере. Перенесем тетраэдр на гиперсферу, так чтобы всеми своими вершинами он расположился в трехмерном многообразии, содержащем четырехмерное содержимое многообразие гиперсферы. —Ясное дело, в нетронутом виде он не совпадет с содержащим гиперсферу многообразием, и для совпадения должен быть искривлен. Тогда ребра тетраэдра пойдут по большим кругам—геодезическим содержащего многообразия гиперсферы; грани совпадут с большими сферами того же содержащего многообразия, а объем деформированного тетраэдра составит часть объема вышеуказанного содержащего многообразия. Получится гиперсферический тетраэдр, аналогичный в двухмерном пространстве сферическому треугольнику. Измеряя телесные углы этого гиперсферического тетраэдра, мы нашли бы сумму их большею, нежели 4π. Разность той и другой величины зависит очевидно от степени искривленности тетраэдра, т. е. от кривизны гиперсферы, или от величины

а кроме того, она зависит от размеров тетраэдра.

В самом деле, тетраэдр, весьма малый сравнительно с площадью гиперсферического содержащего многообразия, и искривлен был бы весьма мало; а совсем малый тетраэдр мог бы считаться не подвергшимся деформации. Итак, если бы мы хотели, обратно, оценить кривизну гиперсферы по величине гиперсферического избытка, то этот последний надлежало бы отнести к единице объема. Таким образом, удельная емкость трехмерного сферического пространства характеризует собою его кривизну.