Личность и Абсолют

a11, a12 … a1n

a21, a22 … a2n

an1, an2 … ann

В этой таблице aik первым значком—i обозначается номер строки, вторым, к—номер столбца. Составляем всевозможные произведения из всех этих чисел так, чтобы в каждое произведение входило по одному числу из каждой строки и из каждого столбца. Очевидно, мы получим произведение вида

a1p1 a2p2 … anpn

где р1 р2, pn есть определенным образом расставленные числа 1,2,…, n, причем число этих «перестановок», как известно, будет равно 1·2·3·…·n=n! Если в качестве основного порядка «перестановки» взять прямую последовательность 1, 2, 3, …, η и под инверсией (беспорядком) понимать то явление, что большее число стоит в перестановке раньше меньшего, то мы получим в одних произведениях четное число инверсий во вторых значках, в других нечетное. Возьмем первые со знаком плюс и вторые со знаком минус. Тогда сумма всех этих произведений и образует детерминант л–го порядка. Обозначая через [р1 р2, pn] число инверсий в перестановке р1 р2, pn мы можем Определить указанный детерминант как

Если имеется детерминант второго порядка:

a11, a12

a21, a22

то он равен a11, a12 — a21, a22 Здесь число, равное детерминанту, состоит из алгебраической суммы двух произведений, из которых оба имеют первыми значками основную перестановку, т. е. (1, 2), а вторыми значками—две возможные тут перестановки из двух элементов—(1, 2) и (2, 1), причем второе произведение как содержащее инверсию во вторых значках (2, 1) взято с минусом. То же самое легко усматривается на детерминанте 3–го порядка, который, очевидно, будет равен следующей алгебраической сумме произведений:

a11a22a33 + a12a23a31 + a13a21a32 — a11a23a32 — a12a21a33 — a13a22a31

Таково обычное определение детерминанта.

b) Что же мы тут усматриваем с точки зрения категориальной структуры? Мы находим прежде всего, что некое число (которому равен детерминант) составлено здесь из некоей системы чисел, рассмотрено в свете этой системы, вычислено при ее помощи. Значит, уже по одному этому детерминант вполне правильно отнесен нами к категории ставшей сущности арифметического числа. Всматриваемся, что же это за система чисел и как она составлена. Оказывается, наше число представлено здесь как алгебраическая сумма некоторых произведений. Это значит, что наше число взято нами в своем количественном содержании; и то, что мы получаем в результате применения действующей тут системы чисел, есть непосредственное количество. Другими словами, здесь мы имеем структуру того же типа, какую имели при непосредственном вычислении арифметического ряда (напр. в арифметической прогрессии), только что отдельные слагаемые составлены здесь по более сложному закону, чем в обыкновенных арифметических рядах. Остается, следовательно, учесть закон составления этих слагаемых, и мы исчерпаем категориальную структуру детерминанта.