Личность и Абсолют

4, 9, 14, 19 …

Дальнейшие классы, очевидно, были бы только повторением уже данных, и, следовательно, классов возможно здесь столько, каково количественное значение модуля. Все эти пять классов чисел, на которые разбивается натуральный ряд чисел по модулю 5, образуют собою модуль в широком смысле, или вид группы. Легко увидеть на такой группе применение всех указанных выше моментов определения группы.

Из области чисел возможны и более сложные групповые построения. Так, напр., из теории групп можно вывести малую теорему Ферма.

b) Приведем пример группы функций, а именно рациональных функций. Пусть мы имеем, напр., такие шесть функций:

Простым вычислением убеждаемся, что эти функции являются элементами некоей единой группы, если под композицией понимать получение функции от функции, т. е. подстановку в одну из функций функции другой функции вместо. Точно так же все целые функции комплексного переменного образуют группу, если под композицией понимать опять получение функции от функции: целая функция от целой всегда будет тоже целая.

с) Однако особый интерес представляют геометрические группы. Рассмотрим, напр., группу вращений какой–нибудь плоской фигуры. Возьмем равносторонний треугольник лвс и посмотрим, как его можно вращать так, чтобы в результате вращения он совпадал с самим собою. Если мы перечислим все такие способы вращения, они образуют собою группу вращений. Оказывается, таких способов существует шесть: 1) оставление данного треугольника в покое; 2) поворот вокруг центра на 120°, чтобы в попало в а, С—в в и а—в С; 3) поворот вокруг центра на 240° (или на 120° в обратную сторону), чтобы С попало в а, а—в в и в—в С; 4) поворот на 180° вокруг оси ad; 5) то же вокруг be; 6) то же вокруг cf. Будем понимать под композицией замену двух вращений соответствующим эквивалентом в виде одного вращения. В таком случае нетрудно убедиться, что шесть указанных вращений образуют группу, потому что каждые два из них образуют какое–нибудь третье (напр., соединение вращений 2–го и 5–го дает 6–е).

Интересны также группы вращений правильных многогранников, переходящих в самих себя. Таковы группы 12 вращений тетраэдра, 24 вращений октаэдра и куба, 60 вращений додекаэдра и икосаэдра.

В § 63 были указаны геометрические типы построений—аффинный, проективный и «метрический» (эквиформный). Мы можем понимать эти построения как типы преобразований и говорить, таким образом, о группах преобразований. Эквиформная группа, основанная на преобразованиях подобия, состоит из таких элементов, которые указывают на масштабы фигуры, но оставляют в полной неизменности их конфигурацию. Это и есть наша элементарная геометрия, изучающая лишь те свойства, которые остаются инвариантными при всех преобразованиях подобия. Все эти преобразования составляют группу, эквиформную группу, если под композицией понимать последовательное проведение преобразований подобия. Исключим отсюда ортогональность, продолжая сохранять в наших преобразованиях параллельность. Мы получим аффинную группу преобразований. А отказываясь также еще и от параллелизма, получаем проективную группу преобразований.

Возьмем для примера прямоугольник. Сосредоточимся на его свойстве как именно прямоугольника, т. е. на равенстве диагоналей. Тогда все преобразования, оставляющие неизменным это равенство, образуют собою эквиформную группу. Но для этого равенства диагоналей необходимо, чтобы прямоугольник при всех своих преобразованиях сохранял свою конфигурацию, т. е. оставался подобным себе, т. е. чтобы углы его были соответственно равны, а стороны параллельны. Отвлечемся от равенства углов. Тогда наш прямоугольник будет рассматриваться как вообще параллелограмм, т. е. в нем мы будем фиксировать в качестве основного свойства уже не равенство диагоналей, а только их взаимное деление пополам. Все преобразования, оставляющие неизменным это свойство, суть аффинная группа. Наконец, забывая и о параллельности сторон, т. е. о параллелограммности, и начиная видеть в прямоугольнике только четырехугольник, иными словами, не равенство диагоналей и не их взаимное деление пополам, мы получаем проективную группу преобразований, если наши преобразования оставляют неизменным только этот простой факт.

d) Обозревая все эти примеры группы, мы выносим ряд поучительных иллюстраций. Мы видим, как разнообразна бывает композиция. Она допускает какое угодно взаимоотношение двух элементов, только бы оно было твердо фиксировано. Мы замечаем, как действует коммутативность и ассоциативность композиции. Коммутативность явно выполняется отнюдь не везде. Напр., понимая под композицией вычитание, а под группой натуральный ряд в первых примерах, мы отнюдь не можем считать, что 3—2 = 2 — 3. Если мы берем чистые вращения (напр., плоскости вокруг начала координат), то композицией является здесь складывание одного угла вращения с другим. Такая группа, очевидно, коммутативная. Но попробуем присоединить к вращениям также зеркальное отображение, т. е. при вращении плоскости ху вокруг начала еще имеется симметрия относительно оси у. В этом случае элементы могут и не коммутировать. Не коммутативна также группа ортогональных преобразований в трехмерном пространстве и пр. Наоборот, в подавляющем большинстве случаев налична ассоциативность^ композиции. Это обеспечивает нам то, что мы можем осуществляй нашу композицию на любых элементах. Не будь (φτ)υ=φ(τυ), это значило бы, что не каждый элемент может вступать в композицию с каждым элементом, сохраняя свою индивидуальную значимость. Впрочем, в упомянутом примере с композицией в виде вычитания мы имеем дело с неассоциативной группой, так как (2 —5) —2 #2 —(5—2).

Пусть фигура вращается, увеличивается в масштабе и зеркально отражается. Один и тот же результат получится и когда мы вращаем и увеличиваем, а потом зеркально отображаем, и когда сначала увеличиваем, а потом вращаем с зеркальным отражением. Наконец, везде было видно в предыдущих примерах, где там элемент–единица и где обратный элемент. Яснее всего это в геометрии. В группе вращений, напр., элементом–единицей является состояние покоя, а обратным элементом—вращение в обратную сторону. В группах преобразований уменьшению соответствует увеличение, а зеркальному отражению — новое зеркальное отражение и пр. В модуле, приведенном выше (п. 1а), единичным элементом является нуль, в примере же на функциональную группу—∫₀=x· Заметим, однако, что, в сущности говоря, и элементединица вопреки заявлениям математиков в конце концов необязателен. Его нет, напр., в той группе, которую образует собою натуральный ряд чисел 1, 2, 3, … и композицией для которой является сложение, так как не существует никакого числа ряда, которое бы в сложении с единицей оставалось бы самим собою. В то же время ряд 0, 1,2, 3,… имеет такой единичный элемент в этих условиях, и он равен 0.

Имея все это в виду, можно сказать, что в конце концов из всех моментов определения понятия группы только первые два остаются совершенно необходимыми—это однозначность композиции и принадлежность ее результата к общей совокупности.

3. а) Рассмотрим еще один пример группы—пример, который, однако, имеет для всей теории групп первостепенное значение, так что это даже не пример, а скорее общий метод представления всякой группы вообще. Это именно группа подстановок. Кстати, она теснее свяжет наше изложение с тем, что говорилось вначале относительно дедукции группы вообще.