Хаос и структура

Такое понимание непрерывности лежит в основе постулатов Дедекинда и Кантора.

b) Дедекинд формулирует аксиому непрерывности так:

«Если все точки прямой распадаются на два класса такого рода, что каждая точка первого класса лежит влево от каждой точки второго класса, то существует одна, и только одна точка, которая производит это разделение прямой на два класса, это рассечение прямой на два куска».

С первого взгляда совершенно не видно, почему постулат непрерывности Дедекинда обладает указанными выше свойствами. Чтобы это уразуметь, начнем с житейских образов. Когда я смотрю сейчас на георгины, то их пышные темно–красные цветы хотя и составляют нечто целое со всем садом, но это целое дано тут в прерывных образах. Когда же я с георгин перевожу глаза на небосклон, то я вижу, что густая синева в зените постепенно, непрерывно переходит в голубизну ближе к горизонту и на самом горизонте почти уже теряет всякий голубой оттенок и становится белесоватой и почти белой. Наконец, когда я смотрю просто в зенит, то никакого перехода из одного цвета в другой я вообще не замечаю, и переход происходит только по вполне однородному густо–синему полю.

Аксиома непрерывности, основанная на чистом становлении, предполагает переход по одному пустому и равномерному пространству. Тут просто происходит бесконечное количество актов полагания, слившихся в одно общее протяженное полагание, т. е. тут полагание есть полагание только бы гия, чистого бытия, вне всякой качественности. Тут имеются в виду только самые акты полагания и совершенно игнорируется смысл того, что именно полагается. С другой стороны, аксиома Архимеда, основанная на четком различении одного заполненного пространства от другого, вовсе не говорит о чистом становлении в непрерывном потоке, но только говорит о тех различиях, которые вносятся в этот поток едино–раздельной структурой числа. Аксиома Архимеда относится к непрерывности в аспекте едино–раздельной струкгуры того, что вовлечено в поток непрерывности. Это есть непрерывность георгин, левкоев, роз, резеды и пр. цветов на общем фоне сада. Ведь сад тоже есть нечто целое, и эта целость непрерывно разлита по всем отдельным цветкам и деревьям, входящим в состав сада. Вот о такой–то непрерывности и говорит аксиома Архимеда. Это непрерывность прерывных предметов.

Наконец, можно переходить и от одного предмета к другому, от одного качества к другому и все же соблюдать непрерывность не как непрерывность прерывного, но именно как становящуюся непрерывность, как непрерывность чистого становления. Для этого нужен только постепенный переход от одного качества к другому, непрерывное изменение, скажем, синего в голубой. Тут, следовательно, будут происходить не просто акты полагания неизвестно чего, но вместе с этими актами будет полагаться и определенная качественность. С «бытием» будет вместе полагаться и «наличное бытие», но то и другое сольется в одну новую, уже энергийно–выразительную безразличность, так что и бытие будет становиться, и сама качественность будет в той же мере непрерывно становиться.

Вот это–то качественное, образное, или, как мы выражаемся, [эту ] энергийно–выразительную непрерывность, и имеет в виду Дедекинд. А именно, для чего ему понадобилось делить прямую на два класса точек? Предыдущие аксиомы непрерывности вполне обходятся без этого. Понадобилось ему это потому, что он при всем бытийственном переходе одних точек в другие, при всей взаимной неразличимости все же хочет их как–то различить, сохранить их качественное своеобразие. Точно так же, как и мы, хотя и видим постепенный переход от синего к голубому, все же совершенно определенно различаем синий цвет от голубого, точно так же и Дедекинд для демонстрации явления непрерывности прежде всего указывает на полную прерывность, на полную различимость и даже раздельность двух классов точек. Что бы тут ни происходило, но требуется, чтобы было два различимых класса точек, так как только этим путем и можно сохранить их качественное своеобразие. Но что же оказывается дальше? А дальше оказывается, что эти два класса разделены только одной и единственной точкой, что конец правой стороны линии, точка разделения и начало левой стороны линии оказываются одной и той же одной и единственной точкой. Это и значит, что синее переходит в голубое постепенно, непрерывно[36].

Таким образом, если под аксиомой Архимеда лежит интуиция раздельных тел, под аксиомой непрерывности в аспекте бесконечного процесса лежит интуиция пустого и темного пространства, то под аксиомой Дедекинда лежит интуиция поля, качественного пространства, расцветающего в непрерывном разнообразии своих красок.

Интересным является также и постулат Кантора о непрерывности, вызванный сходными же интуициями. Кантор[37] [38] говорит: если на прямолинейном отрезке ОМ имеется два неограниченных ряда отрезков OA, OB, ОС, OA', OB', ОС… из которых первые растут, а вторые уменьшаются таким образом, что отрезки АА', В В', СС… постоянно уменьшаются и в конце концов становятся меньше всякого данного отрезка, то на отрезке ОМ существует такая точка X, что ОХ больше, чем все отрезки первого ряда, и меньше, чем все отрезки второго ряда.

В этом постулате Кантора лежит тот же принцин, что и у Дедекинда, но в то время как последний подчеркивает в одном энергийном образе момент устойчивости, стабильности процесса нарастания, у Кантора, наоборот, подчеркивается момент подвижности этого нарастания. У Дедекинда каждая точка процесса квалифицируется сразу тройным образом — как конец предыдущего периода, начало последующего и как точка, отделяющая одно от другого. У Кантора, наоборот, каждая точка процесса мыслится как только достигаемая в этом тройном смысле; она как бы еще только собирается быть концом одного, началом другого и разделением. Обе картины — и Дедекинда, и Кантора — рисуются на фоне синтетически–качественной, энергийной выразительности. Постулат Дедекинда, другими словами, есть диалектический синтез постулата Архимеда и постулата становящейся непрерывности (синтеза) при посредстве постулата Вейерштрасса.

§ 61. Аксиома непрерывности в отдельных математических науках.

1. Формулировка аксиом непрерывности, развитая в предыдущем параграфе, легко приобретает и чисто арифметическое, и чисто геометрическое значение, стоит только «числа» заменить «отрезками» (или другими геометрическими понятиями). Поэтому нет нужды загромождать изложение отдельной формулировкой принципа непрерывности в арифметике и в геометрии.

Стоит, может быть, только остановиться на этой аксиоме в применении к теории множеств и к теории вероятностей, так как здесь существует в математике более своеобразная терминология.

2. Что касается теории множеств, то здесь учение о непрерывности можно формулировать при помощи понятий полного и сцепленного множества, которые определяются следующим образом. Сцепленное множество есть то, в котором между каждыми двумя элементами можно иметь еще один элемент. Ясно, что понятие сцепления возникает на основе категории непрерывности в аспекте его становления (аналогично § 59.5). Полным называется такое сцепленное множество, в котором присоединение каждого нового элемента делает этот последний или наибольшим, или наименьшим. Нетрудно заметить и здесь некоторую аналогию с учением о непрерывности в аспекте ее полноты или непроницаемости (§ 59.4). В теории множеств непрерывным множеством и называют такое упорядоченное множество, которое является и сцепленным, и полным. Следовательно, аналогия с моментом ставшего (§ 59.6) должна привести к понятию предела. Самым общим положением здесь явится теорема Больцано — Вейерштрасса: «Всякое бесконечное ограниченное множество имеет хоть одну предельную точку».