Хаос и структура

a) Весьма наглядным делается, прежде всего, место теоретико–множественной топологии в системе аксиоматических установок вообще. Именно, под топологией понимается наука, изучающая те свойства множеств, которые сохраняются в условиях взаимно–непрерывного соответствия. Что в центре внимания здесь стадия непрерывности, это ясно; и что в условиях этой непрерывности мы соблюдаем только последовательность элементов ( = категорий подвижного покоя), отвлекаясь от всякой фигурности, это тоже ясно. Что же касается аффинных и проективных [множеств] (в смысле аналогии с проективной геометрией), то здесь также, по–видимому, принципиально возможны соответствующие построения.

Особо поговорим о метрических множествах, т. е. о понятии меры в применении к теории множеств.

b) Мы уже знаем (§ [ ]), что понятие меры возникает только в связи с категорией становления, и ниже, в § 66.2, мы этот вопрос развернем диалектически по поводу аксиом конгруэнтности. Сейчас нам важен тут только один принцип: становление структуры, если оно действует как самостоятельный принцип, застилает самую структуру новым слоем, который, будучи сравниваем с самой структурой, является ее измерением, или мерой. Математики поступают в определении меры весьма просто и наивно, за что, впрочем, в данном случае можно только похвалить. Можно было бы говорить и еще проще, не прибегая к нагромождению ненужных обозначений (к тому же обязательно греческими буквами) и пр.

Математики рассуждают так[57]. Мера множеств, лежащих на данном сегменте, есть не что иное, как более общее понятие длины отрезков этого сегмента. Пусть какое–нибудь множество F входит в S. Так как обычно берется интервал [0,1 ], то мера множества μ(F) равняется 1—мера (S— F), т. е. мера F + мера (S—F) = мере S=1. Мера μ(F) есть нижняя грань множества всех мер μ(G), т. е. всех мер любой «области» G, которая содержит F. Мера этой области μ(G) есть, наоборот, верхняя грань всех мер любого замкнутого множества F, лежащего в этой области. Если взять произвольное множество G⊃ Ε, то нижнюю грань множества всех неотрицательных чисел, изображающих меру области можно назвать внешней мерой множества μ*(E) a верхнюю грань всех неот­рицательных чисел, дающих меру для F⊂ E, можно на­звать его внутренней мерой μ*(E). Когда внутренняя мера множества равняется его внешней мере, то множество измеримо, и данное число его внутренней или внешней меры есть его мера вообще. Попросту говоря, если я буду измерять данный объем изнутри и его же извне и оба размера измерения совпадут, то это значит, что данный объем действительно измерим и существует некая опре­деленная количественная величина, которая его изобра­жает (или измеряет). Ясно видно, что измеримость мно­жества связывается именно с возможностью его перекры­тия, т. е. покрытия новым слоем, т. е. с введением момента становления.

Отбросим всякое становление и возьмем только голую структурность множества, т. е. едино–раздельность актов числового полагания (признавая только такое становление, которое абсолютно имманентно самой отвлеченной структуре множества и еще не выделено в особую категориальную положенность). Тогда мы получим в качестве идеального образца просто натуральный ряд чисел и то, что называется счетным множеством (т. е. множество, эквивалентное множеству всех натуральных чисел). Какова будет мера всякого счетного множества? Его мера = 0; и это ясно само собой, хотя математики делают вид, что они это «доказывают». Это ясно так же, как и то, что мера множества из одной точки равняется нулю. Возьмем отрезок [0; 1 ] и на нем множество всех отрицательных чисел. Какова мера этого множества? Ясно, что мера эта равна единице. Вообще говоря, всякое замкнутое множество (т. е. содержащее в себе все свои предельные точки) и всякое совершенное множество (т. е. содержащее в себе все свои предельные точки и никаких других), если мера его будет больше нуля, всегда будет несчетно.

Употребляя совсем обывательскую терминологию (а она всегда прекрасна, если правильно отражает интуитивную картину жизни), можно сказать так. Когда есть просто идеальная структура, она несжимаема и нера–сширяема и плотность ее дана раз навсегда. Когда дается ее инобытийно становящийся аналог, то этот аналог можно деформировать как угодно. На то он и есть инобытие, становление. И вот, я могу эти точки, из которых состоит множество и о взаимном расстоянии которых раньше не было речи (или шла речь в переносном смысле слова), располагать на том или ином расстоянии одна от другой, располагать их гуще или реже. Вот эта плотность распределения и есть мера. Ясно, что различия «плотности» предполагают введение принципа инобытия в абсолютную «плотность» (или, если угодно, абсолютную разреженность[58]) абстрактного, идеального множества. Но инобытие в сравнении с абсолютной различенностью структуры есть некая неразличимость; неразличимость же есть сплоченность, сплоченность есть континуум, г. е. несчетное множество. Следовательно, наличие <…> меры, превышающей нуль, уже предполагает несчетное множество.

b) Измеримость множества есть, таким образом, результат его непрерывности. К этому сводятся основные положения теории измеримых множеств, которые, по Н. Лузину[59], звучат так.

Во всяком измеримом множестве Μ меры μ, μ>0 содержится такое совершенное множество Ρ, что

mes Ρ>μ — ε,

где ε>0, малое как угодно.

Всякое измеримое множество Μ меры, большей нуля, есть сумма конечного, или счетного, числа совершенных множеств Pi, Pi, … не имеющих попарно общих точек, и нуль–множеств [а ]N.

Измеримое множество обладает точками плотности и точками сгущения. Точка а есть точка плотности множества, если отношение

где δ — интервал, содержащий а внутри, стремится к 1, когда δ стремится к нулю. Та же самая точка есть точка разрежения, если это отношение стремится к нулю вместе с δ.