Хаос и структура

3. а) Чтобы дать общую и строгую логическую формулу аксиомы ставшего наличного бытия в арифметике, будем рассуждать так. Ставшее есть то, что остановилось. Покамест оно не остановилось, оно было только становлением. Становление, по самому существу своему, неопределенно. Оно идет неизвестно откуда и неизвестно куда. То есть чистый алогизм бытия, в котором, как в таковом, невозможны никакие расчленения. Невозможно применить к нему, например, категорию тождества; и нельзя даже сказать, тождественно ли оно себе самому, ибо оно в каждый момент все разное и разное и его невозможно поймать ни в какой точке; в нем все плывет сплошно. Но вот оно остановилось, т. е. мы перешли к ставшему. Это значит прежде всего, что становление оказалось чем–то, и прежде всего самим собою, оно стало тождественным с самим собою. Ставшее есть тождество становления с самим собою. Но что надо для того, чтобы установить тождество становления с самим собою? Для этого надо вернуться с конечной точки становления к первоначальной; и если оба направления становления окажутся тождественными по своему процессу и по своему результату, то искомое тождество и будет установлено. Итак, ставшее есть не что иное, как тождество направлений становления в смысле их общего результата.

К этому сводятся и указанные выше законы счета. Единственное, что утверждает коммутативный закон, — это тождество направления производства арифметической операции. О разных вариациях этого направления и об их тождестве в смысле результата говорят и другие два закона. Следовательно, мы могли бы сказать так.

Аксиома ставшего наличного бытия в арифметике: арифметический счет имеет своим основанием тождество направлений своего становления. Другими словами, арифметический счет зависит только от количественной характеристики чисел при любом инобытийном воспроизведении. Или: арифметический счет характеризуется законами коммутативным, ассоциативным и дистрибутивным в операциях сложения и умножения.

b) Впрочем, можно дать в кратчайшей и тем не менее превосходной формуле арифметическую интерпретацию конгруэнтности, не прибегая даже к самим законам счета, а только имея их в виду вообще. А именно, что мы, собственно говоря, делаем, когда пишем формулы этих трех законов в п. 2а? Пусть, например, мы высказали a + b = b + a. Что это значит? Это значит, что была некая величина с, которая составлялась из а и b. Мы сложили а и получилось с. Чтобы формулировать на этом основании коммутативный закон, мы должны были (α + b) приравнять к (b + α) на основании равенства того и другого с третьей величиной с. Пусть мы имеем: α+ (6 + c) = (a+b) + c. Чтобы вывести этот ассоциативный закон, мы должны были сначала вычислить левую часть этого равенства, определивши искомую сумму, например, как [d]; затем мы должны были вычислить правую часть и найти сумму для правой части. Только когда в обоих случаях у нас получилось то же самое [d], мы можем сказать, что ассоциативный закон в сложении верен. Так же точно мы поступаем и во всех законах счета, как сложения, так и умножения. Нетрудно заметить, что в глубине этих трех законов лежит одна огромной важности идея и она–то и есть настоящая идея арифметической конгруэнтности, если ее понимать в максимальной общности и отвлеченности, минуя все конкретные формы, в которых она может являться. Эта идея следующая:

две или несколько величин, равные порознь третьей величине, равны между собою.

Тут [все три ] дедуцированных нами закона арифметического счета суть только проявления этой общеарифметической идеи конгруэнции; и они вырастают из нее как из своего глубокого и последнего основания. Эта идея есть и наилучшая арифметическая интерпретация той общедиалектической аксиомы ставшего числового бытия, которая дедуцирована выше.

Когда говорится, что две величины, равные порознь третьей величине, равны между собою, то, очевидно, предполагается, что эти две величины по крайней мере по внешнему своему виду различные, так как, будь они равны с самого начала, не было бы смысла и выставлять эту аксиому. Следовательно, обе эти величины имеют полное право быть внешне различными. Однако что же это значит? Могут ли они быть количественно различными? Конечно, нет. Могут ли они стоять на любом месте? Да, они могут стоять на любом месте, но этот принцип нельзя понимать в абсолютном смысле. Если бы тут был абсолютный принцип безразличия порядка действий, тогда можно было бы в математическом выражении числитель писать вместо знаменателя и обратно, показатель степени — вместо основания и обратно, и т. д. Конечно, не эту нелепость утверждает аксиома конгруэнтности. Но тогда что же остается? Сказано совершенно точно: тождество направлений становления. Становление есть тут, как известно, действие, арифметическая операция, но не в смысле количественной значимости вовлеченных в эту операцию чисел и не в смысле порядка отдельных моментов операции. Поскольку становление есть инобытийно–алогическое, т. е. сплошно–непрерывное, развертывание, под[64] становлением в смысле арифметической операции можно понимать только вариирование операции в условиях полной сохранности ее смысловой структуры. Это и заставляет геометров связывать конгруэнцию с понятием движения и перемещения и утверждать, что конгруэнтность есть неизменность фигуры при перенесении ее в любое место. Тут как раз и имеется в виду алогическое становление фигуры (ее перемещение) при условии сохранности ее структуры. Точно то же имеем мы и в арифметике. Две величины, равные порознь третьей, могут обладать именно разными направлениями своего становления (например, а + b и b + а) в этом и заключается то, что мы выше назвали разницей внешнего вида величин. Таким образом рассматриваемое арифметическое положение действительно с огромной точностью воспроизводит в арифметических терминах общедиалектическую аксиому конгруэнтности.

4. Необходимо отдавать себе полный логический отчет в диалектической последовательности и назревании числовой мысли в арифметике. Когда мы строили аксиомы едино–раздельности, арифметика созрела у нас до степени категории счета. Что надо для счета? Для этого нужно, чтобы каждое число было сформировано внутри себя самого и чтобы ясно было отношение сформированных чисел между собою. Первое было определено категориями самотождественного различия и подвижного покоя. Второе было дано через закон определенности числового бытия. Но, получивши идею арифметического счета, мы, в сущности, получили не что иное, как возможность бесконечно двигаться вперед и назад по натуральному ряду чисел. Надо было внести какие–нибудь диф–ференции в это безразличное движение по натуральному ряду, т. е. надо было получить возможность не просто выхватывать те или иные числа из этого ряда, но надо было уметь пользоваться и разными комбинациями этих чисел. Для этого надо было внести моменты становления в самую категорию счета. Получились разнообразные арифметические действия. Последние и есть ведь не что иное, как самый обыкновенный счет, но только с различными дифференциациями внутри себя, т. е. в условиях различного комбинирования чисел. Но ведь числа твердо держатся каждое на своем месте в общем натуральном ряду чисел.

Но это значит, что требуется не только непрерывность чисел и действий над ними, но еще и конгруэнтность как чисел, так и действий. А для этого надо воспользоваться категорией ставшего.

5. Только теперь, с присоединением аксиомы конгруэнтности, наш счет, который мы вывели в сфере едино–раздельности только отвлеченно, наполнился живым содержанием и превратился в реальные законы арифметического счета вообще. Но это не значит, что невозможна арифметика без аксиомы конгруэнтности. Наш общий перво–принцип конгруэнтности, формулированный в § 64.3, гласит вовсе не то, что решительно всякое арифметическое число конгруэнтно. Он гласит только то, что всякое арифметическое число «так или иначе определено с точки зрения конгруэнтности». А вполне возможна арифметика, где этот принцип будет действовать отрицательно, и мы получим здесь числа, лишенные принципа конгруэнтности. Ниже (§ 66.5) мы укажем теорему Паскаля как наиболее яркую для характеристики геометрической конгруэнции. Если возможна непаскалева геометрия, то так же возможны и непаскалевы числа. Это числа, к которым применимы все упомянутые выше законы счета, кроме закона коммутативности умножения. Если бы мы стали входить в подробности, то, между прочим, мы нашли бы, что для неконгруэнтности в этом смысле необходимо нарушение принципа непрерывности, так что не все неархимедовы числа суть непаскалевы, но все непаскалевы обязательно суть в то же время и неархимедовы. Это должно быть понятно <…>, потому что в диалектической системе становление предшествует ставшему и, отвлеченно говоря, становление возможно без ставшего, но ставшее невозможно без становления. Нагляднее это дело будет обстоять в геометрической области.

§ 66. Аксиома ставшего числового бытия в геометрии.

1. а) О конгруэнтности в геометрии говорили больше всего, и это только потому, что там она видна грубее и показательнее, а вовсе не потому, что роль ее тут больше по существу. Даже самое понятие конгруэнтности почти не выяснилось геометрами, <…> и общепонятном смысле. Гильберт без дальнейших разъяснений говорит «конгруэнтный или равный», так что остается неизвестным, чем же конгруэнтность отличается от равенства. Невозможно понять, чем конгруэнтность отличается от подобия. Большинство геометров объединяет конгруэнтность с понятием движения. Так, Пеано брал понятия «точки», «отрезка» и «плоской поверхности», присоединял к ним «движение» и отсюда конструировал аксиому конгруэнтности. Другие (Виери) брали «точку» и «движение» и т. д.

Это «движение» в данном контексте или непонятно, или, когда становится понятным, оказывается весьма наивным. В самом деле, зачем геометры привлекают эту категорию? По–видимому, тут имеется в виду очень простая вещь: чтобы судить о конгруэнтности, надо две фигуры [сопо]ставить между собою или заставить одну и ту же фигуру передвинуться на другое место с тем, чтобы потом посмотреть, не изменилась ли она в своих очертаниях. Если это представление правильно, то можно только удивляться его наивности.

b) Во–первых, вполне абсурдно применять к геометрическим фигурам понятие движения в физическом смысле. Когда мы говорили о покое и движении, то понимали под этим чисто смысловые категории (образец: от единицы мы «движемся» к двойке, от двойки — к тройке, и т. д.). Но говорить о том, что треугольник «движется» по пространству— это значит высказывать нелепость или выбирать слишком грубую манеру выражаться. В этом же смысле можно говорить о движениях по топологическому или проективному пространству. В этом [же] смысле «движение» играет первостепенную роль и в аксиоме параллельности (к которой мы в дальнейшем перейдем), так как, чтобы судить о том, встречаются ли где–нибудь параллельные или нет, надо прежде всего «двигаться» по этим параллельным. Движение в этом смысле играет первостепенную роль везде в числе, начиная с его первых категориальных моментов.