Хаос и структура

2. Категория эта сложная, и тут возможны многочисленные подразделения. Однако для нас достаточно будет только двух видов математического выражения.

Во–первых, в выражении мы можем, напр., выделить выражение чистого смысла, отбрасывая выражение становления или ставшего. Выражение ведь несет на себе все внутреннее, т. е. все наши предыдущие диалектические категории, которые раньше не были ни внутренними, ни внешними, а здесь, в связи со своеобразием данной диалектической сферы, стали все внутренними. Мы можем, следовательно, выдвинуть во всей структуре выражения момент выраженности той или иной [из] предыдущих категорий. Ограничимся выделением выраженности последних двух категорий — ставшего чистого и ставшего заполненного. Конкретнее говоря, поставим вопрос: что даст в своем выражении — умозаключение и доказательство. Или еще конкретнее и ближе к математике: что даст в своем выражении функция и доказываемая теорема. Решим первую часть вопроса.

Надо найти выражение функции. Надо, значит, найти такую категорию, которая бы зависела в своем выражении от функции. Очевидно, такой категорией не может быть величина [>> ], если мы напишем как обычно:

<y = f (x)>

Это будет не выражение функции, а сама функция, т. е. категория, уже выведенная нами. Надо найти такой [у], в котором функция участвовала бы именно как функция со всем своим конкретным содержанием. Подставляя разные величины в х, мы получим разные у, но[113] отношения между χ и у останутся в любых значениях χ теми же самыми, сама–то функция останется совершенно без всякого изменения. Она в диалектическом смысле не будет положена, т. е. будет жить именно не как функция, но только лишь как мертвое вместилище того, что действительно тут живо, т. е. изменяющихся количественных значений х. Следовательно, чтобы была выражена сама функция, нужна величина, которая бы зависела не только от изменения своего аргумента, но и от изменения самого своего вида.

Другими словами, здесь мы получаем то, что в математике называется функционалом, т. е. величину, зависящую в своих изменениях не только от количественных значений х, но и от вида функции этого аргумента. Самое обычное оперирование с таким понятием (если не с термином) мы имеем в вариационном исчислении, где изучается, напр., интеграл типа [114]

Здесь мы имеем функцию от двух аргументов (л: и у), и она же, кроме того, является функцией производной от у {у'). И требуется узнать, какой вид надо придать функции </(>>)>, чтобы интеграл имел максимум или минимум. Величина <J{y)), таким образом, определяется здесь выбором самой функции, а не только количественными подстановками. Она есть уже не просто функция, но функция в гораздо более узком смысле слова, функционал.

3. Во–вторых, мы можем задаться вопросом: как выражается наполненное умозаключение, или доказанная теорема? Чистое ставшее раньше дало функцию, потом функционал. А что даст наполненное ставшее, если оно раньше дало доказанную теорему? В выражении есть внутреннее, есть внешнее и есть отношение между тем и другим. По внешнему, если это есть действительно выражение, мы должны узнать внутреннее. В предыдущем случае роль внутреннего лучше всего поручить функции, которая меняет свой вид; величина [J ] будет иметь значение (количественное) в зависимости от вида подынтегральной функции. Здесь же внутренним должна быть не функция, но доказанная теорема, т. е. прежде всего непосредственно данная значимость числа. Ее–то мы и должны найти по некоему внешнему виду выражения. Мы должны иметь такое выражение, чтобы путем разного рода манипуляций добраться до некоей непосредственной числовой значимости и чтобы этот процесс получения оказался вместе с тем и процессом доказательства. Это не есть просто доказательство, потому что тогда мы имели бы здесь ту или иную теорему. Но это есть доказательство наличия некоей определенной числовой значимости, построяемое всецело на внешнем ее выражении, на выражении ее внешних судеб. Внешние судьбы ее известны, а сама она—неизвестна; и вот, изучая это известное, мы идем к [не Известному, ибо это — выражение диалектический синтез известного внешнего и неизвестного внутреннего.

Другими словами, тут перед нами уравнение в самом широком и общем значении этого слова, когда какая–нибудь функция неизвестного аргумента дана как известная, т. е. приравнена той или иной числовой значимости, и, из этого приравнения исходя, мы должны определить сам неизвестный аргумент х. Пожалуй, выводимая здесь категория даже шире «решаемого уравнения», почему, может быть, целесообразнее было бы говорить вообще об алгоритме как методе исчисления чего бы то ни было с целью нахождения того или другого неизвестного.

Таким образом: функционал есть число, данное как выражение чистой ставшести числа, или число как выраженность чистого умозаключения; алгоритм (уравнение) есть число, данное как выражение наполненной ставшести числа, или число как выраженность наполненного умозаключения.

§ 78. Общность полученных категорий.

Для удобства обзора всех категорий общей теории числа см. таблицу.

Необходимо отметить, что, поскольку мы в данном месте нашего исследования занимаемся именно общей теорией числа, постольку все выводимые здесь категории оказываются весьма общими, максимально общими, какие только могут быть в математике. Ни одна математическая наука не может их избежать, как бы ни старались многие разверстать их между отдельными науками.