Хаос и структура

4) Должно быть, стало быть, не только становление, изменение и непрерывность, но еще и такое непрерывно–изменчивое становление, которое по своему внутреннему смыслу дало как становление дробящееся.

с) Не может быть только дробности. Чистая прерывность помешала бы понятию предела. Пробивающаяся изнутри дробность, определяя собою прерывные точки общего процесса становления, не может мешать тому, чтобы непрерывность все же продолжала как–то функционировать. Это, мы сказали, прерывность относительная, т.е. она как–то объединяется с непрерывностью. 5) Предел возникает на почве объединения непрерывных и прерывных моментов становления, направленного к пределу; и стоит только удалить один из этих моментов, как предел тут же сразу и уничтожается, — при удалении непрерывности перестает существовать движение и приближение к пределу, и при удалении прерывности исчезает возможность судить о самом наличии этого приближения. В обоих случаях предел перестает быть пределом или перестает функционировать как предел.

4. а) Можно ли удовлетвориться этим? И этого мало. Непрерывно меняющееся становление, имеющее определенную прерывно–непрерывную структуру, оказывается той или иной комбинацией прерывности и непрерывности. Когда идет речь о пределе, мы, однако, не принимаем во внимание эти прерывные или непрерывные моменты как таковые, хотя им и свойственна определенная структура. Предел — легче и как бы идеальнее всей этой массивной телесности реального становления, т. е. реально построенного числового ряда, или последовательности. Он есть сама комбинация или, вернее, сама ском–бинированность этих моментов, а не самые эти моменты, хотя бы и определенным образом скомбинированные. Существует то или иное чередование прерывных и непрерывных моментов становления, и существует определенный порядок этого чередования, определенный план и закон этого чередования. Вот он–то и интересен для конструкции предела, а не сама стихия становления. Этот план или фигурность становления внедрены в самую гущу становления, и в реальной числовой последовательности они неразрывны — этот план и то, что ему подвержено. Однако, в порядке абстрагирования, ничто не мешает эту смысловую фигурность извлечь из самой последовательности и формулировать самостоятельно. В таком виде, т. е. в виде смысловой закономерности чередования прерывных и непрерывных моментов, становление уже гораздо ближе к пределу, который и надо определить, как 6) структуру, или комбинацию, прерывности и непрерывности.

b) Еще один шаг, и мы получаем точное определение предела. Упомянутая структура, или комбинация, вполне имманентна потоку становления. Но она не только имманентна. Имманентизм становлению есть все же некоторая распределенность по этому потоку становления, распро–стертость в течение потока. Но подобно тому как упомянутая структура прерывностей и непрерывностей извлечена из глубины становления и совлечена с него в некую самостоятельную данность, так необходимо из этой самостоятельно данной структуры тоже извлечь ее идею и смысл и не только извлечь, но и совлечь в новую самостоятельную данность. Всякая фигурность содержит ведь свое целое или свою целость в каждой своей точке, так что сама–то по себе эта цельность имеет вполне определенное и самостоятельное значение. Нужна ли для конструкции категории предела та фигурность со всеми подробностями своего строения? Конечно, не нужна. Надо сжать эту структуру до максимальной плотности — так, чтобы она превратилась вместо развернутого вида в одну заряженную смысловую точку, в одно напряженное задание, готовое излиться каждое мгновение вовне и предопределить собою числовую последовательность—любой длительности и протяжения. Структура непрерывно–прерывного ряда должна исходить из одной напряженной точки, которая не есть уже ни просто прерывность, ни просто непрерывность, но 7) закон и происхождение, рождающее [лоно] и перво–принцип, осмысливающий собою развитую непрерывно–прерывную структуру становления.

5. Это, наконец, и есть предел в математическом смысле слова. И из этого анализа вполне выясняется диалектическое место предела. Первый из указанных пунктов, становление, заставляет признать существенную роль категории отрицания, вернее, алогически становящейся отрицательности. Второй пункт, изменение, вносит в становление антитезу внутреннего и внешнего, которая, в соединении с третьим пунктом, непрерывностью, свидетельствует о том, что с категорией отрицания тут ставится в ближайшую связь именно иррациональность. Непрерывная величина, как мы знаем, и есть синтез внутреннего и внешнего в условиях иррациональной текучести этого синтеза. Иррациональность, стало быть, погружена здесь в стихию алогически становящейся отрицательности. Четвертый пункт, внутренняя дробность, свидетельствует об участии в категории предела — второго момента иррациональности (кроме чистого отрицания); и предел оказывается так же заинтересованным во втором диалектическом моменте иррациональности, во внутренней дробности, как и в первом, в чистой отрицательности. Пятый и шестой пункты из вышеупомянутых, т.е. чередование непрерывности с прерывностью и фигурная структура этого чередования., подчеркивают синтетическую природу предела и его категориальную самостоятельность, а седьмой, момент перво–принципности, доказывает, что речь идет об иррациональности в ее смысловом перво–истоке, что предел есть перво–единство алогически и непрерывно становящейся числовой дробности. Отсюда и диалектическая формула предела.

Предел есть тождество внутренней дробности и внешней алогически становящейся отрицательности, данное как таковое в своем исходном перво–принципе. Или: предел есть иррациональность, данная в своем исходном перво–прин–ципе. Или еще: предел есть закон (или метод) построения иррациональности, потенциальная закономерность иррациональной стихии.

§ 103. Продолжение.

Если мы пересмотрим основные определения в математике, относящиеся к учению о пределах, то нетрудно будет убедиться, что математика здесь также работает категориями, которые только что были развиты, хотя и формулирует их, конечно, чисто математически, а не диалектически.

1. Прежде всего стоит обратить внимание на интересное определение точки скученности, или точки сгущения. Для этого нужно знать, что такое окрестность. Если мы имеем некую точку А и имеем некую величину ε, могущую стать меньше любой заданной величины, то интервал А— ε…Α + г называется окрестностью точки А. Так вот, точка А называется точкой сгущения множества, если в любой сколько угодно малой окрестности А лежит еще бесконечное количество точек.

Так, для последовательности 1 , точкой сгущения является 0, а для последовательности, содержащей 0 и 1, а также числа, построенные по закону и 1+(при η целом и положительном), существуют две точки сгущения, а именно 0 и 1, в то время как числа , , будут здесь т.н. изолированными точками, т.е. в окрестности которых совсем нет точек данной последовательности. Это скромное на первый взгляд утверждение о точках сгущения по своему логическому составу предполагает решительно все те категориальные моменты предела, которые мы выше установили. Тут и антитеза внутреннего и внешнего, п[е]рекрытие окрестности внешним точечным слоем; тут и непрерывно алогически становящаяся отрицательность — в переходе от одной точки бесконечного множества к другой на исчезающе[185] малом расстоянии; тут и внутренняя дробящая сила — в допущении возможности бесконечного количества точек при прогрессирующем уменьшении окрестности; тут и определенная закономерность строения этого алогического скопления бесконечности — в расположенности точек на исчезающе малых расстояниях. Последнее—смысловая закономерность бесконечного скопления точек — в понятии точки скученности еще не так развито и поставлено, как в [прежних ] математических дефинициях, относящихся к пределу. Однако уже и здесь эта специфическая закономерность, порождаемая пределом, чувствуется вполне ощутительно.

Стоит только обратить внимание на то, что точка скученности в случае, когда она для данного бесконечного множества является единственной и потому и предел этого бесконечного <.··>>—как уже становится ясной вся важность этих рассуждений для понимания категориальной структуры предела вообще.

2. Более резко этот момент смысловой закономерности ряда, стремящегося к пределу, выражен в известной теореме Больцано — Вейерштрасса. Она гласит: «Каждое ограниченное бесконечное множество точек имеет по крайней мере одну точку скученности». Собственно, тут можно говорить и о неограниченном множестве, так как ничто не мешает находить еще новые точки и даже бесконечное их количество — в окрестности той точки, которая именуется бесконечностью. Другими словами, бесконечную точку тоже нужно считать точкой сгущения. Итак, имеется ли ограниченное или неограниченное множество, в нем всегда есть хотя бы одна точка сгущения, или скученности. Но что это значит? Это значит прежде всего, что тут мы представляем себе перекрытие некоей области, или интервала, бесконечным количеством точек; и, таким образом, уже по одному этому здесь у нас двухплановая структура, не считая момента, объединяющего эти два количественные плана, — т. е. опять тут все та же антитеза внутреннего и внешнего. Эта антитеза заполнена здесь непрерывным и алогическим становлением. И вообще тут обнаруживаются все те моменты, которые нами уже получены. Но тут гораздо ярче, чем в предыдущем понятии точки скученности, выражен момент структурного построения бесконечного множества. А именно, оказывается, что только тогда точки могут оказаться входящими в бесконечное множество, когда все они притягиваются к каким–нибудь центрам или хотя бы только к одному такому центру. Этот центр, или эта точка сгущения, определяет собою специальную структуру взаимного расположения точек, т. е. такую структуру, когда расстояния между точками исчезающе малы. Это есть вполне определенная структура множества; и вот она–то и предопределена пределом. Предел как бы издали располагает особым образом точки бесконечного множества; он есть как бы принцип построения того числового поля, которое именуется данным бесконечным множеством.

3. Еще ярче эта принципная природа предела выражена в признаке Кохии для сходимости ряда, т. е. для наличия в данной последовательности предела. Как известно, признак, установленный Коши для сходимости ряда, гласит следующее. Пусть мы имеем последовательность

<u1, u2, un>