Хаос и структура

Только теперь мы можем ставить и решать этот вопрос. Покамест мы не знали общедиалектического места числа и покамест мы не знали тайны общедиалектического сопряжения его категориально–конститутивных моментов, нечего было и думать философствовать в числовой области. В числовой области мы могли бы заниматься только чисто числовыми же операциями, т. е. строить не философию, а саму математику, поскольку числовая область, взятая сама по себе, есть чистая формальность и лишенность всякого понятийного содержания, и, оставаясь только в ней одной, мы ничего и не можем получить, кроме самих чисел, т.е. кроме самой математики. Теперь же, зная диалектический смысл числа вообще и диалектический смысл его конститутивных моментов, мы можем с твердой верой приступить к числовому содержанию числа и убежденно искать в нем соответствия тому, что мы получили относительно общей категории числа. Ведь общие законы логики везде одни и те же; и, твердо оперируя с ними в общелогической области, мы можем надеяться на твердое и уверенное оперирование с ними и в чисто числовой области. И это будет уже не просто построение самой числовой области, т. е. не сама математика, но именно логика числа, или философия математики, диалектические основы математики.

Так, из общей отвлеченной основы математической аксиоматики возникает сама математическая аксиоматика, и притом не просто в диалектической выведенное™ (чем необходимо было заниматься предварительно и что мы сейчас и выполняли), но и в своей чисто математической значимости.

В) СИСТЕМА а) АКСИОМА ЧИСЛОВОГО ПЕРВО–ПРИНЦИПА § 36. Неразличимость.

Не будем, однако, удивляться, что аксиоматика начнется у нас с того, что как раз имеет меньше всего математический смысл. Поскольку сейчас нам предстоит формулировать аксиому именно принципа, постольку эта аксиома должна иметь максимально обобщенный вид и постольку нам тут еще не придется употреблять терминов конкретной математики. Больше того. В этой аксиоме перво–принципа должно быть повторено— но уже в виде последнего резюме — то, что мы могли сказать о числе вообще наиболее существенного. Что это число относится к сфере актов чистого полагания, это есть самое последнее и самое общее резюме всего учения о числе. Это и должно быть в данном случае математическим перво–принципом. Из общесмыслового перво–принципа, который является перво–принципом и всякого содержания, мы выделяем чисто числовой, математический перво–принцип, гласящий о функционировании только актов полагания, а не самого полагаемого. И кроме того, этот перво–принцип, много раз формулированный нами выше, берется в своей тоже специфической функции. А именно, в математической аксиоматике мы рассматриваем его не как чистое действие, не как самый перво–принцип в его самостоятельной определяемости всех других числовых построений, но — перво–принцип как суждение, как первое и основное суждение в математике, лежащее в последней глубине всех прочих математических суждений. Поэтому мы здесь не просто фиксируем самый акт перво–полагания, но высказываем суждение: число есть чистый акт перво–полагания. Этим отличается аксиоматическое утверждение перво–принципа от того категориального, которое исследовалось выше.

Выставляемая нами аксиома числового перво–прин–ципа обладает многими интересными свойствами, категориальный аналог которых мы встречали в предыдущем анализе. Остановимся вкратце на самом главном.

Число есть прежде всего некая совокупность. В совокупности для простоты пусть находится три или четыре полагания, хотя «единица» и «нуль» тоже есть некоторые специфические совокупности. Спрашивается, только ли эти три акта полагания различны или они еще и тождественны? То, что они различны и раздельны, это известно всем. Но мысль требует, чтобы они были и тождественны. Когда я ставлю на листе бумаги точку и потом рядом с нею другую точку, то они, конечно, различны, различны по местоположению, по жирности чернил и пр. Но возьмем две математические точки. Чем они отличаются друг от друга? Ничем. Они, конечно, мыслятся как бы в двух разных положениях, напр. на прямой при определенном отстоянии одна от другой. Но ясно, что это отстояние, или расстояние, не имеет ровно никакого отношения к самим точкам и каждая из них может обсуждаться независимо от своего абсолютного положения на линии, на плоскости и т.д. Итак, все точки суть некое абсолютное тождество, самотождество, и в последней своей смысловой глубине они абсолютно неразличимы. Это же самое касается и актов мысленного полагания, т. е. всякого числа вообще. Но если в числе «три» эти три отдельные акта неразличимы, то тогда и само «число», взятое как таковое, тоже внутри себя неразличимо, оно есть некое абсолютное тождество. Более того. Если мы возьмем все возможные числа, то поскольку каждое из них есть абсолютная неразличимость, то и все числа, взятые вместе, — все возможные, действительные и необходимые числа суть тоже некая общая и абсолютная неразличимость и самотождество. И вот это–то и есть числовой перво–принцип. Это и значит, что число есть чистый, т.е. в себе неразличимый, абсолютно простой, акт смыслового полагания.

Скажут: но ведь это же не есть число; число есть раздельность, а вы утверждаете полную неразличимость. На это надо сказать, что мы нисколько не утверждаем, что число есть эта абсолютная неразличимость. Абсолютная неразличимость и самотождество есть не самое чиСло, но перво–принцип числа, и аксиома об абсолютном числовом аш0–тождестве не есть суждение о самих математических числах, но лишь то первое и исходное положение, на котором будут базироваться и конкретно–математические суждения. Естественно, что база чем–то специфически отличается от того, что на этой базе построено. Мало того. Мысль требует, чтобы эта неразличимость как раз и была принципом различимости, и это мы сейчас разъясним.

§ 37. Неразличимость как принцип различимости.

Каждая вещь есть данная вещь именно потому, что она не есть что–нибудь иное. Это утверждение на первый взгляд кажется шуткой и тавтологией. Однако тут высказывается фундаментальное положение философии, без признания которого невозможно и прикоснуться ни к какой теории определения. Если вещь есть нечто отличное от иного и, следовательно, есть она сама, то это возможно только тогда, когда мы внутри нее не фиксируем ровно никаких различий. Вещь есть именно она сама: в этом простейшем и очевиднейшим утверждении с абсолютной необходимостью требуется, чтобы она мыслилась вне всяких своих частей. Это делается до полной осязательности ясным, если мы начнем рассуждать со стороны этих самых «частей».

Пусть данная вещь состоит из пяти частей. Если мы будем фиксировать каждую часть отдельно, целой вещи мы никак не получим. В этом дереве, которое я сейчас вижу в своем окне, отдельный лист не есть дерево, потому что тогда был бы деревом и всякий отдельный лист, который валяется на земле, и вместо видимого мною в окне одного, и единственного, дерева было бы столько же деревьев, сколько я вижу на нем листьев. Ствол дерева гоже не есть дерево, потому [что ] тогда бревна, лежащие тут же на дворе, тоже были бы деревьями. Корень дерева тоже не есть дерево, ветки дерева тоже не есть дерево. И т.д. и т.д. Спрашивается: где же само–то дерево? Совершенно очевидно, что из отдельных частей дерева нельзя получить самого дерева. Но отдельные части дерева есть то, что в нем различимо. Значит, из различимой стороны дерева нельзя получить самого дерева. Само дерево есть неразличимость, абсолютно самотождество. Только это и дает возможность выделить дерево именно как дерево на фоне всего двора, которое я вижу в своем окне. Не будь этой неразличимости внутри дерева, я не мог бы фиксировать дерево как дерево, оно распалось бы на тысячи частей, которые сами не суть дерево, и я совсем не отличил бы дерева от всего прочего. Ясно, что неразличимость дерева оказалась необходимым принципом для его различения на фоне прочих предметов и, следовательно, необходимым принципом и для всяких различений внутри него самого. Внутренняя неразличимость вещи есть условие для ее внутренней различимости и раздельности.

Все это относится и к числу. Одна единица не есть число «одиннадцать»; другая единица тоже не есть число «одиннадцать»; третья единица — то же самое. Спрашивается: откуда же получилось само–то число «одиннадцать»? Конечно, всякому известно, что практически «одиннадцать» получилось из одиннадцати единиц. И если что смешно и тавтологично, если что действительно глупо, так это именно утверждение, что вещь состоит из своих частей, а число «одиннадцать» состоит из одиннадцати единиц. Эта беспомощная и бессильная тавтология ровно ничего нам не говорит. «Одиннадцать» есть совершенно отдельная, самостоятельная индивидуальность, не делящаяся на одиннадцать частей. Единицы, «входящие» в число «одиннадцать», даже не суть и части числа «одиннадцать». «Одиннадцать» ровно никаких частей в себе не содержит и ни на что не делимо, ни из чего не составляемо. Оно внутри неразличимо, нерасчленимо. Неразличимость есть принцип его различимости. Конечно, не забудем: «одиннадцать» не есть просто неразличимость, а нужно только сказать, что неразличимость есть его перво–принцип, не оно само в его реальной структуре и не его принцип, но именно его яерво–принцип. И потому либо есть такой перво–принцип и внутренняя сверх–раз–личимость, неразличимость числа «одиннадцать», супра–акт «одиннадцати», — тогда есть и «одиннадцать» как именно одиннадцатисложная структура; либо нет никакого перво–принципа, — тогда нет и числа «одиннадцать», а есть только отдельные единицы. Впрочем, и отдельных единиц тоже не получится, потому что каждая единица тоже должна быть некоторой самостоятельной неразличимостью; и если неразличимости нет в «одиннадцати», то ее не будет и в «единице»; «единица» тоже распадается еще на более мелкие части, как распалось «одиннадцать» на отдельные части, а эти части будут распадаться еще дальше. И так до бесконечности мы все будем гнаться за числом и нигде его не найдем, а получим вместо ясной и прозрачной едино–раздельной и разумной структуры числа полную иррациональную тьму и хаос, абсолютное безумие и пустоту, в которой уже действительно не найдешь ничего различного и в которой потонет все ясное, все стройное, все разумное и исчезнет все человеческое.

Так, по неизбежной диалектической необходимости абсолютная неразличимость есть принцип и основание различимости, а внутри–раздельное и различимое число требует абсолютной неразличимости как своего перво–принципа.

§ 38. Неразличимость как принцип конкретной числовой индивидуальности.

Стоит всячески подчеркивать момент, который мы уже затронули бегло в предыдущем параграфе. Именно, аксиома перво–принципа обеспечивает нам понимание числа как своеобразной и ни на что другое не сводимой индивидуальности. Мы все время говорим, что неразличимость числа есть условие его различимости. Но сейчас эту мысль необходимо заострить в том направлении, что всякое различение есть ведь порождение одного в отличие от другого, что возможно только тогда, когда это «одно» имеет какое–то свое собственное свойство, которого нет ни в чем ином, ибо иначе одно и не отличалось бы ни от чего прочего. Следовательно, неразличимость есть принцип живой индивидуальности числа, принцип числа как существа, как живого организма, имеющего свой лик, свою физиономию, свою личность. Неразличимость есть диалектический принцип числа как самостоятельной личности. Число есть личность. И эта числовая личность, числовое существо и индивидуальность возможны только потому, что числу, этой абсолютной разделенности и расчлененности, всегда свойственно и абсолютное самотождество его составных моментов. Это, во–первых, касается всей числовой сферы вообще, ибо она в отличие от всего не–числового, от вещей, мыслей и пр., тоже имеет определенную живую индивидуальность. Это касается, во–вторых, и каждого числа в отдельности — в его отличии от прочих чисел, поскольку оно есть своя особенная личность, индивидуальность и как бы живое существо.