Хаос и структура

Вторая область, отмеченная нами в § 9, есть инобытие, отрицание первой, т. е. отрицание едино–раздельных и изолированных актов полагания. Единораздельности может противостоять только нераздельность, неразличимость, слитость актов полагания. Но это не та неразличимость, которая есть перво–принцип. Там была неположенная неразличимость, неразличимость «как такая», «вообще». Здесь же мы находимся в сфере реальных актов полагания, и потому здесь неразличимость положенная, утвержденная, распростертая. Там она была перво–прин–цип, рождающий всякое число и всякую числовую операцию; здесь же это геометрический континуум и геометрическая величина вообще. Таково это экстенсивное число и экстенсивная аксиоматика.

Интенсивное и экстенсивное число мы синтезировали в § 9 в эйдетическое число, которым занимается т. н. теория множеств. В определении множеству совсем не повезло в математике. Его определяют настолько общо и тавтологично («совокупность, объединенная в целое», «многое, мыслимое как одно» и т. д.), что такое определение подошло бы решительно ко всякому предмету — реальному, нереальному, возможному, невозможному и т. д. Откладывая детальное развитие понятия множества до соответствующего отдела нашего сочинения, мы должны будем коснуться все же самого существенного, раз вопрос поднят о систематической аксиоматике. И это существенное укажет нам, что множество вбирает в себя континуум, который в геометрическом пространстве дан как овеществленная и самостоятельно гипостазированная инаковость едино–раздельного числа. Эта совмещенность арифметического числа с его инобытием сказывается в том, что отдельные единицы, «входящие» в число, не мыслятся здесь абсолютно самостоятельно, т. е. в зависимости только от своей категориальной значимости, [ч]то они мыслятся так или [иначе] расставленными. Вообще говоря, им свойственна здесь идея порядка. Разумеется, натуральный ряд чисел тоже есть упорядоченность. Но это та упорядоченность, которая зависит только от смыслового содержания самих «единиц», т. е. самих актов полагания, но не от той «плоскости», не от той арены, где происходит их расстановка. Во множестве же, если оно только вообще чем–нибудь отличается от обычного арифметического числа, мы находим взаимоотношение элементов, продиктованное также и формой их взаиморасположения, т. е. формой участия в числе того инобытия, в котором произведены акты полагания, характерные для данного числа. Это будет эйдетическая аксиоматика.

Наконец, существенно новую отрасль аксиоматики представляют собой аксиомы теории вероятностей. Эта теория символизирует собой переход от идеального числа в сферу биолого–социологической действительности, и тут должен фигурировать учет той «случайности» и самопроизвольности, которая так отличает жизнь и организм от всякой механической области.

Эти четыре ряда аксиом вполне специфичны. Вырастая на общем логическом скелете и внутренно определяясь общесмысловой логической последовательностью и системой, они тем не менее совершенно специфичны, ибо специфичны те области, для которых они призваны быть первыми основоположениями. Эту специфичность мы и должны сберечь во что бы то ни стало.

2. Стоит также предпослать конкретной аксиоматике раздельного числа и еще одну установку. Так как задачей аксиоматики является подыскание математического эквивалента для общедиалектических схем, то, разумеется, с первого же шага[18] мы должны будем расстаться с нашим постоянным термином «акт полагания» и вместо него употреблять то, что ближе к конкретной математике, хотя и соблюдая все еще необходимую для аксиоматики общность.

Что делалось у нас с актом полагания? Покинув сферу неразличимого перво–акта, он стал раздельным в себе и раздельным в сравнении со всем прочим. Пусть он со всей своей раздельностью перешел в «становление» и через «ставшее» стал некоторой «выразительной» формой. Всем этим диалектическим моментам должна соответствовать чисто математическая терминология. Если остановиться на самом общем, что тут происходит с актом полагания, то можно сказать, что акт полагания, разделяясь и дробясь в себе, отделяется и от других актов, хотя и вступает с ними в ту или другую связь. Иначе говоря, акт полагания начинает входить во взаимоотношение с самим собою и во взаимоотношение с другими актами. Но что значит быть во взаимоотношении с самим собою? Это значит быть целым и иметь части. И такое представление во многих отношениях и достаточно. Нам же невозможно сейчас остановиться на этом, так как тут фиксируются только весьма частные факты и не соблюдается общность, необходимая для аксиоматики. Наиболее общими терминами, рисующими взаимоотношение едино–раздельного акта с самим собою, будут термины «совокупность», «элемент» и «отношение». Позже мы увидим, что «совокупность» и «целое», равно как и «элемент» и «часть», — пары терминов, самым резким образом отличающихся между собой; также полезно на нашей ступени общности оставить термин «отношения», вводя спецификацию уже при анализе только отдельных областей.

Итак, самое общее положение вещей, с которыми имеет дело математическая аксиоматика, — взаимоотношение совокупностей со своими элементами, к чему, само собой разумеется, прибавляется и взаимоотношение самих совокупностей. Отныне мы можем уже не употреблять общелогический термин «акт полагания», а можем заменить его рассуждением о взаимоотношении совокупностей с их элементами и о взаимоотношении самих совокупностей. Правда, там, где ясность изложения будет требовать, мы не станем брезговать и этой общедиалектической терминологией.

Необходимо всячески подчеркивать, что эти три термина — «совокупность», «элемент» и «отношение» — суть только самые общие термины аксиоматики. Мы сейчас же увидим, как они специфицируются и по отдельным числовым областям, и в порядке собственного диалектического развития понятия «совокупность».

1. САМОТОЖДЕСТВЕННОЕ РАЗЛИЧИЕ § 45. Аксиома самотождественного различия в арифметике.

Перво–акт полагает себя и переходит из неразличимости в едино–раздельность, в бытие, если понимать этот термин в самом общем смысле. Кроме того, имея в виду, что дальше будет реализация этого едино–раздельного бытия в становление и ставшее, можно с достаточной выразительностью назвать его идеальным и соответствующие аксиомы — аксиомами идеальной структуры числа. Ибо перво–принцип уже не идеален; идея есть разумная раздельность, а он выше этого, т. е. выше, общее и самой идеи.

1. В этой области, однако, где утвержден акт в своей едино–раздельности, мы произвели в § 26 весьма важное членение, которое послужит нам путеводной нитью в установке аксиом. Именно, в § 26 мы видели, что «акт полагания» более конкретно может быть охарактеризован при помощи категорий различия, тождества, движения и покоя. Акт полагания не только есть или не есть он сам и свое иное («бытие» и «инобытие»); акт полагания, если он действительно есть едино–раздельность, или координированная раздельность, также различен с собою самим и со своим инобытием и тождествен с самим собою и со своим инобытием; он, кроме того, покоится сам в себе и в ином и движется сам в себе и в своем ином. Это разъяснено в § 26. Удобнее всего, как мы приняли в § 27, эти чисто смысловые (в отличие от алогизма становления) категории распределять так: бытие с инобытием, или определенное бытие; самотождественное различие и подвижный покой. Это подразделение чисто смысловой (или идеальной) сферы акта полагания мы и применим к нашей аксиоматике.

2. Начнем с категории самотождественного различия. Мы уже знаем, что отныне число у нас есть не что иное, как определенно оформленная совокупность элементов. Что получится для интенсивного числа, если в этом общем понятии совокупности элементов выставить на первый план категорию самотождественного различия? Заметим, что проведение аксиоматики решительно по всем детальным областям сейчас было бы нецелесообразно, так как то, что можно было бы считать аксиомой, т. е. основоположением, во многих отделах математики излагается в виде настоящих теорем; часто нам пришлось бы в этой главе об аксиоматике предвосхищать значительную долю содержания самых этих отделов. Поэтому в интенсивном числе мы ограничимся пока аксиомами арифметики (минуя алгебру и анализ), в экстенсивном числе — обыкновенной геометрией (минуя разные другие виды геометрии) и в эйдетическом числе — теорией множеств (минуя развитую теорию теоретико–множественного континуума и топологию).

Самотождественное различие арифметической совокупности с самой собой и с другими совокупностями указывает на то, что в самой совокупности 1) все элементы различны между собою и с самой совокупностью и 2) в то же время, все вместе взятые, тождественны с нею. Тут важна специфическая особенность интенсивного числа — быть зависимым только от своего самостоятельного, чисто смыслового, т. е. в данном случае количественного, содержания и не зависеть от своего инобытия. Если бы тут была зависимость от инобытия и элементы не только бы значили каждый согласно своему смысловому содержанию (количеству), а еще зависели бы от взаимной расстановки, тогда и сама совокупность была бы не просто количественной совокупностью, но содержала бы в себе еще специфическую, т. е. чисто эйдетическую, цельность. И тогда отдельный элемент, даже взятый сам по себе, уже содержал бы в себе энергию целости, а вся совокупность была бы не арифметическим числом, но «множеством». В арифметическом, т. е. чисто интенсивном, числе совокупность равняется своим элементам только в том случае, если их взять все полностью. Взятые вместе, они и есть эта совокупность; и ничего в совокупности нет иного, кроме суммы этих элементов.

3. Строго говоря, целое никогда и нигде не равняется сумме частей, и в арифметике число тоже не есть сумма всех своих единиц. Но мы помним: интенсивная совокупность есть нулевая в смысле своей инобытийности, в смысле участия инобытия (поскольку тут играет роль только само понятие элементов, т. е. их количественная значимость). Примышлять нулевую инобытийность не значит продолжать рассматривать целое как простую сумму его частей. Как только мы, взявши простую сумму всех частей, примыслим тут, что это взятие есть нулевое в смысле инобытийности, так мы тем самым уже перестали иметь дело с голой суммой всех частей. Мы уже тем самым отличили ее как таковую от всего прочего, т. е. превратили в целость. Целость эта, разумеется, инобы–тийно–нулевая, а не инобытийно–содержательная, которая во «множестве» является уже источником для специфического упорядочивания множеств.