Хаос и структура

В арифметическом числе порядок единиц должен быть инобытийно–ну левым, т. е. он должен быть продиктован только самой же числовой значимостью чисел. Порядок и взаимное расположение чисел должны тут вытекать из значения самих чисел, а не от того «фона», на котором они даются, не от тех различных «расстояний» и «направлений», которые могут быть продиктованы этим «фоном». Тут только одно и есть «расстояние» между единицами— это просто перечисление единиц по их количественному значению: 1, 2, 3, 4… и т. д.; и тут одно только и есть «направление» — это то, которое определено значением самих чисел (в данном случае возрастание). Лучше же сказать, арифметические числа никаких совершенно не имеют междуединичных расстояний и этим единицам ровно никакое направление не присуще. Это нулевые расстояния и нулевые направления. Это чисто смысловая, т. е. чисто количественная, взаимораспределенность и чисто количественная направленность.

Отсюда и аксиома.

Аксиома подвижного покоя в арифметике: арифметическое число есть совокупность определенным образом взаимно расположенных элементов.

Так как эта аксиома не содержит никакого указания моментов числового инобытия, то, следовательно, понимать такую формулировку можно только неинобы–тийно, т. е. только в смысле чисто количественной значимости. Можно, конечно, и отметить эту нулевую ино–бытийность. Тогда пришлось бы добавить несколько слов вроде «при их чисто смысловом расположении», или «при их чисто смысловой значимости», или «когда это расположение определено только смыслом самих элементов» и т. п.

3. Из распространенных аксиом арифметики сюда подойдут, очевидно, «аксиомы порядка», из которых, однако, надо брать не все ввиду их неравномерной значимости, а только некоторые. Очевидно, сюда целиком подойдет аксиома: «Если а и b суть какие–либо два различных числа, то всегда одно из них больше другого, т. е. всегда а>Ъ и b<а». Отсюда вытекают (но отнюдь не равносильны первой аксиоме) и другие: «Если а>b и А > с, то а>с»; «Если а>b, то всегда также а+с>b+с»; и наконец: «Если а>b и с> О, то всегда также ас>bс». Преследуя аксиоматическую общность изложения, можно и не касаться грех последних положений и ограничиться только первым об а>b и b<а.

§ 51. Аксиома подвижного покоя в геометрии.

1. Без труда формулируется та же аксиома для геометрии, поскольку здесь мы находимся в области инобытия числа, и категория подвижного покоя будет дана в своем инобытии. Это значит, что движение здесь мыслится не между отдельными единицами, из которых состоит чистое число, но между моментами инобытийными, т. е. пространственными, и покой будет мыслиться не в недрах самого числа, а среди инобытийно–числовых, пространственных моментов. Как в предыдущей категории различие дало различие не просто актов полагания и не единиц, но точек, а тождество оказалось не тождеством вообще, но пространственным тождеством точек, т. е. линией, плоскостью и телом, так и здесь мы должны оперировать с точками, этим бытием чисто числовых единиц, и должны от одной точки переходить к другой, наблюдая, что получается в результате этого движения и этого покоя.

Пусть мы двигаемся по линии от точки А к точке В. Чтобы показать, что мы именно движемся от А к В и что, придя в 5, мы именно остановились, для этого, очевидно, нужно, чтобы мы имели не просто голые и изолированные точки А и Ву взятые сами по себе, но в каком–то их специфическом взаимоотношении. Нужно, чтобы А уже сама по себе указывала бы на В, α В сама по себе указывала бы на А. Другими словами, нужно, чтобы обеим точкам была свойственна идея порядка, чтобы от А мы шли бы действительно кВи чтобы в таком случае и от В шли бы к А. Легче, однако, это демонстрировать на трех точках, потому что при существовании только двух точек еще есть возможность двигаться в обратную сторону. Когда же мы имеем на одной прямой три точки А, В, С и движемся от А в направлении к С, то тут уже во всяком случае нам придется пройти через точку В. Почему? Потому что точки А, В, С расположены в определенном порядке, связаны определенной последовательностью; и если вообще двигаться в этом направлении, то нельзя не пройти точки В. Таков порядок этой системы. В момент прохождения через В мы как бы на мгновение останавливаемся, а это и значит, что тут действует категория подвижного покоя и что она определяет собою единство направления и порядка.

Можно поэтому в следующем виде выставить нашу аксиому.

Аксиома подвижного покоя в геометрии: геометрическая величина есть совокупность определенным образом взаиморасположенных элементов в их инобытии. Или подробнее: геометрическая величина есть совокупность определенным образом взаиморасположенных элементов, находящихся в состоянии движения по актам своего внешнего полагания и в состоянии покоя, достигаемого этим внешним движением.

2. Из обычных формулировок аксиом сюда относятся т. н. аксиомы порядка. Их я взял бы почти в том виде, как они даны у Гильберта, хотя и в ином порядке — ради большей стройности и последовательности мысли. Именно, на первом месте я бы поставил то, что у Гильберта занимает третье место (II 3):

1. «Из трех точек прямой всегда одна, и только одна, лежит между двумя другими».

За этой аксиомой логически следует та, которая у Гильберта на первом месте (II 1), потому что сначала надо поместить одну точку между двумя другими, а потом уже говорить об отношении ее к этим другим, равно как только после этого следует говорить о продолжении движения за пределы этих двух точек (II 2). Таковы эти аксиомы:

2. «Если А, В и С—точки одной прямой и В лежит между А и С, то В лежит также между С и А».