Хаос и структура

2. У С. Н. Бернштейна[33] имеется тезис, который у него назван аксиомой совмещения событий. Удивительным образом это и есть то, что мы называем аксиомой подвижного покоя в теории вероятностей. Тут приходится еще и еще раз удивляться, как математическая мысль, если она правильная, бессознательно формулирует как раз те самые тезисы, которые философ дедуцирует из общих диалектических оснований разума. Тут редкий случай, когда я могу переписать математическую аксиому к себе, в свое философское исследование, не внося в нее решительно никаких поправок.

Аксиома подвижного покоя в теории вероятностей: если а есть частный случай факта А, то вероятность а при данных условиях зависит только от вероятности факта А при тех же условиях и от вероятности, которую приобретает а в случае осуществления факта А.

Примером независимых фактов может служить одновременное кидание игральной кости, все шесть граней которой равновероятны, и вынимание шара из урны, в которой находится одинаковое количество белых и черных шаров. Так как эти события независимы, то вероятность каждого из 12 возможных их совмещений всегда будет одна и та же, а именно равна 1/12. Другое дело, когда имеется в виду опыт с зависимыми событиями. Если Иван покупает по одному билету в двух лотереях, а Петр покупает билет только в первой лотерее с тем, чтобы купить билет во второй лотерее только в случае выигрыша в первой, то, хотя вероятность выигрыша в первой лотерее у обоих одинакова, а во второй — у Ивана больше, чем у Петра (поскольку Петр во второй участвует необязательно), все же в результате вероятность выигрыша в обеих лотереях у Ивана и Петра одна и та же, потому что вероятность выигрыша для Петра во второй лотерее будет одинаковой с вероятностью этого выигрыша для Ивана. Здесь вероятность выигрыша в обеих лотереях для обоих одна и та же, поскольку она зависит от вероятности первого выигрыша (одинаковой для обоих) и вероятности второго после осуществления первого (тоже у обоих одинаковой).

Более просто «аксиома совмещения» демонстрируется на таком примере. Существуют такие вероятности: 1) умереть для здорового 10–летнего ребенка в течение года вообще; 2) заболеть ему же скарлатиной вообще; 3) ему же умереть в течение того же срока от скарлатины. Наперед должно быть ясно, что, поскольку в третьей вероятности смерть рассматривается в зависимости от скарлатины, эта вероятность будет зависеть как от вероятности скарлатины вообще, так и от вероятности смерти для заболевшего скарлатиной, причем она не зависит от вероятности смерти вообще для 10–летнего. Как, однако, вычислить эту вероятность совмещения, будет рассматриваться в своем месте (§ ).

III. ОПРЕДЕЛЕННОЕ БЫТИЕ § 54. Аксиома определенности (закона) бытия в арифметике.

1. В § 26, 27 и 46.1 мы видели, что число как идеальная структура (в отличие от реального становления) характеризуется пятью категориями: бытие, различие, тождество, движение и покой. Вся эта область представляет собою бытие в широком смысле слова, т. е. бытие, включая и всю его внутреннюю структуру. Оно диалектически противостоит инобытию, или небытию, объединяясь с которым превращается уже в бытие, для которого положена также и внешняя граница, т. е. в ограниченное, в определенное бытие, дальнейшая эволюция которого приходит уже к становлению. В этом смысле инобытие может быть объединено с бытием так же тесно, как мы объединяли тождество и различие и как объединяли покой и движение. Если мы рассмотрим теперь значение этой составной категории определенности бытия, или закона построения бытия, то вместе с самотождественным различием и подвижным покоем это составит достаточно полное η систематическое рассмотрение всей чисто бытийной (онтической) и смысловой стороны числа, и мы сможем тогда перейти и к категориям, связанным с алогическим становлением.

2. Начинаем с арифметики. Определенность бытия арифметического числа есть закон тех операций, в результате которых оно получается. Когда мы заставляем действовать инобытие, мы прежде всего отличаем бытие от инобытия проведением границы, отграничением. Проводя эту границу, мы совершаем операцию, которая даст нам не просто число, но и закон его появления из других чисел, закон объединения используемого нами бытийного материала для получения числа. Когда мы рассуждали о категории самотождественного различия, или подвижного покоя, мы не говорили о числе как полной и конкретной индивидуальности; мы именно говорили об элементах и частях числа, т. е. анализировали его внутреннее инобытие, отвлекаясь от узрения числа целиком, от фиксации самого закона появления числа из других чисел. Ведь бытие со своей внутренней структурой, определяемой категориями самотождественного различия и подвижного покоя, предстоит теперь как уже сформированное, как отличенное от всех других видов бытия. Число, в котором мы нашли различные и тождественные, подвижные и устойчивые элементы, теперь уже внутренне сформировано, отличено от всякого иного числа; и мы как бы отходим от него на некоторое расстояние, чтобы обозреть его целиком и, пользуясь его четко установленными со всем прочим границами, сравнить его со всеми другими числами. Это и значит, что мы заставляем вступать это число в различные комбинации с другими числами, т. е. производим над ним те или иные операции. Вот закон этих операций и есть аксиома определенности бытия числа.

В чем же этот закон заключается? Тут мы можем только повторить то, что раньше говорилось о своеобразии бытия арифметического. Это бытие, как мы знаем, инобытийно–нулевое, т. е. оно зависит в своей значимости и структуре только от своей чисто смысловой же значимости. Число вне себя действует ровно так, как действует оно и внутри себя, т. е. как действуют внутри его составляющие его единицы. Эти единицы абсолютно однородны и однозначны; между ними не мыслится никаких особых расстояний, кроме того чисто отвлеченного и чисто смыслового различия, которое всегда присуще им как таковым и которое и есть они сами. Если мы, разъясняя категорию подвижного покоя, говорили, что единицам, входящим в число, т. е. натуральному ряду чисел, не свойственно никакой иной упорядоченности, кроме как только определенной чисто числовым же значением этих единиц, то точно так же мы теперь рассуждаем и в отношении, царящем [34] и между разными числами. В операциях между отдельными числами существует тот же закон, что и в операциях между единицами внутри каждого числа. Закон сочетания этих чисел точно так же говорит о независимости результата этого сочетания от инобытия, т. е. от взаимного расположения элементов. Арифметические действия нисколько не зависят от порядка действия, т. е. от сочетания, перемещения и распределения элементов в этих действиях. Отсюда и аксиома.

Аксиома определенности (закона) бытия в арифметике: арифметическое число есть совокупность элементов, появляющаяся в результате операций над теми или другими совокупностями вне зависимости от специфического порядка элементов, над которыми производится операция, т. е. независимо от их сочетания, перемещения и распределения. Или: арифметическое число есть совокупность элементов, появляющаяся в результате операций над теми или другими совокупностями при инобытийно–нулевой значимости их взаимораспределения. Или еще короче: арифметическое число есть результат счета.

3. Чтобы формулировать эту аксиому чисто математически, необходимо принять во внимание одно обстоятельство. Дело в том, что категория определенности бытия относится, как мы знаем, только к чистому бытию, г. е. не к становящемуся и не к ставшему, а к чисто идеальному, смысловому бытию. Мы ведь дальше пока никогда не шли. Что же касается чистого и идеально–структурного бытия, то оно одно, взятое само по себе, отнюдь не может обеспечить полностью математического предмета, и в частности полноты арифметических операций. Поэтому, строго говоря, на данной диалектической ступени, когда речь идет о законоопределен–ности числового бытия, мы должны говорить только об арифметических действиях вообще и даже еще более обще—о счете, о законах счета. Закон определенности арифметического бытия есть закон счета. Если бы мы не давали нашей расчлененной диалектики математики, то уже тут можно было бы вскрыть содержание этих законов счета, к которым приходит исследовательская мысль. Именно, мы здесь могли бы зафиксировать как различные типы арифметических операций, так и законы счета в более узком смысле слова, т. е. как законы ассоциативный, коммутативный и дистрибутивный. Однако расчлененность изложения заставляет отнести эту детализацию «закона счета» на долю последующих категорий, здесь же—ограничиться одним голым утверждением, что мы не только мыслим числа как составленные из других чисел и как расположенные в определенном порядке, но что, когда отдельные числа уже сформированы, мы можем их комбинировать как угодно и от этой комбинации, от самого процесса комбинирования нисколько не страдают эти числа, продолжая входить в операцию ровно с тем же количественным содержанием, которое было свойственно им и самим по себе, до всякой операции.

Итак: арифметическое число подчинено закону счета, т. е. оперирование с ним не зависит ни от каких вне–количественных элементов, которые бы содержались в нем самом. Самотождественное различие говорит о статической составленности, взаимоприложенности отдельных элементов в некую цельную совокупность. Подвижной покой говорит о порядке следования этих элементов внутри полученной совокупности. Закон определенности числового бытия говорит уже о разных формах составления и упорядочения чисел, т. е. уже не об отдельном числе, но о разных числах. Оказывается, что когда мы берем и разные числа, то все равно операции с ними не зависят ни от какого вне–количественного их инобытия. Но это и значит, что мы считаем. Ибо арифметический счет как раз и основан на фиксации результатов вне–инобытийных, чисто количественных операций с разными числами.

§ 55. Аксиома определенности (закона) бытия в геометрии.

1. В геометрии действует числовое инобытие. Однако, будучи оторвано от такого числа и являясь его диалектическим отрицанием, геометрическое инобытие слишком вещественно понимает бытийственную определенность. Все эти сочетания, перемещения и распределения происходят тут в отношении пространственных моментов. Закон определенности бытия в этой области есть закон оформления геометрических фигур, появляющихся как раз в результате определенных пространственных операций с применением идеи порядка. Это, конечно, всецело инобытийная упорядоченность, порядок самого инобытия, отрицающего числовую энергию и потому статического, как бы застывшего. В результате получается геометрическая фигурность, застывшая и пространственная, в которой основной закон — построенность из инобытий–ного материала на основании идеи порядка.

Аксиома определенности (закона) бытия в геометрии: геометрическая величина есть совокупность элементов, появляющаяся в результате операций над теми или другими совокупностями в зависимости от специфически–инобытий–ного порядка элементов, над которыми производится операция. Короче: геометрическая величина есть результат построения.