Морозова Елена Германовна , кандидат химических наук Введение в естествознание (учебное пособие) Рецензент: кандидат геолого-минералогических наук, священник Константин Буфеев Учебное пособие представляет собой курс естествознания, который может быть использован в системе высшего гуманитарного и среднего общего образования.
Возникло философское учение — механистический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749-1827), французский математик, физик и философ. Лаплас был убежден, что к закону всемирного тяготения сводятся все явления, известные ученым. Исходя из этого, он работал над созданием, — в дополнение к механике небесной, созданной Ньютоном, — новой, молекулярной механики, которая, по его мнению, была призвана объяснить химические реакции, капиллярные явления, феномен кристаллизации, а также то, почему вещество может быть твердым, жидким или газообразным.
Лаплас видел причины всего этого во взаимном притяжении между молекулами, которое считал он, есть только «видоизменение всемирного тяготения». Лапласовскии детерминизм выражает идею абсолютного детерминизма — уверенность в том, что все происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Суть его можно понять из высказывания Лапласа: «Современные события имеют с событиями предшествующими связь, основанную на очевидном принципе, что никакой предмет не может начать быть без причины, которая его произвела...
Воля, сколь угодно свободная, не может без определенного мотива породить действия, даже такие, которые считаются нейтральными... Мы должны рассматривать современное состояние вселенной как результат ее предшествующего состояния и причину последующего. Разум, который для какого-нибудь данного момента знал бы все силы, действующие в природе и относительное расположение ее составных частей, если бы он, кроме того, был достаточно обширен, чтобы подвергнуть эти данные анализу, обнял бы в единой формуле движения самых огромных тел во вселенной и самого легкого атома; для него не было бы ничего неясного, и будущее, как и прошлое, было бы у него перед глазами...
Кривая, описываемая молекулой воздуха или пара, управляется столь же строго и определенно, как и планетные орбиты: между ними лишь та разница, что налагается нашим неведением». С этими словами перекликается убеждение А. Пуанкаре: «Наука детерминистична, она является таковой a priori (изначально), она постулирует детерминизм, так как она без него не могла бы существовать.
Она является таковой и a posteriori (из опыта); если она постулировала его с самого начала как необходимое условие своего существования, то она затем строго доказывает его своим существованием, и каждая из ее побед является победой детерминизма». Дальнейшее развитие физики показало, что в природе могут происходить процессы, причину которых трудно определить.
Например, процесс радиоактивного распада происходит случайно. Побочные процессы происходят объективно случайно, а не потому, что мы не можем указать их причину из-за недостатка наших знаний. И наука при этом не перестала развиваться, а обогатилась новыми законами, принципами и концепциями, которые показывают ограниченность классического принципа — лапласовского детерминизма.
Абсолютно точное описание всего прошедшего и предсказание будущего для колоссального многообразия материальных объектов, явлений и процессов — задача сложная и лишенная объективной необходимости. Даже в самом простейшем случае классической механики из-за неустранимой неточности измерительных приборов точное предсказание состояния даже простого объекта — материальной точки — также нереально.
Начало крушению механистической картины мира положили работы в области электромагнетизма [16]. С тех пор механические представления о мире были существенно поколеблены. Любые попытки распространить механические принципы на электрические и магнитные а также оптические явления оказались несостоятельными. Поэтому естествознание вынуждено было в конце концов отказаться от признания особой, универсальной роли механики.
Механистическая картина мира начала сходить с исторической сцены, уступая место более глубокому пониманию физической реальности. Согласно современным представлениям, классическая механика имеет свою область применения: ее законы выполняются для относительно медленных движений тел, скорость которых много меньше скорости света. Глава 2 ОСНОВЫ ПРЕДСТАВЛЕНИЙ О ТЕПЛОВОЙ ЭНЕРГИИ Понятия тепла и температуры О том, что такое теплота, люди задумывались очень давно.
Такие понятия, как «огонь», «свет», «теплород» встречаются уже в древнейших сказаниях Востока, а позже в работах античных философов Древней Греции. Однако в те далекие времена были высказаны только общие предположения о природе огня, света и теплоты. Учение о тепловых явлениях начинает развиваться только с середины XVIII века. Толчком для этого развития является изобретение термометра.
Интересно отметить, что на протяжении долгого времени между понятиями тепла и температуры не проводилось различия. Temperature — в переводе с латинского означает смешивание в должном отношении. Это говорит о происхождении самого термина «температура». Дело в том, что не сразу было понято, что здоровые люди имеют практически одну и ту же температуру.
Степень нагретости относили к темпераменту человека. Ученым, который первым изобрел прибор для измерения нагретости тела, был Галилей. Конечно, этот прибор еще далек от совершенства, он даже не был проградуирован. Однако он все же позволял сравнивать температуры тел, находящихся в одном и том же месте и в одно и то же время. Впервые температуру человеческого тела начал измерять итальянский врач и анатом Санторио с помощью им же изобретенного термометра.
После Галилея многие ученые занимались изготовлением приборов для определения нагретости тел: итальянские мастера из Флоренции, Отто фон Генрике, Амон-тон, Гук, Фаренгейт, Цельсий, Реомюр, Делиль и другие. В 1655 году Гюйгенс предложил в качестве опорных точек термометра избрать точку кипения воды и точку таяния льда. Современная шкала Цельсия была предложена шведским ботаником Андерсом Цельсием в 1742 году.
Однако за 0 градусов он принимает точку кипения воды, а за 100 градусов — точку таяния льда, как и Делиль. Такая шкала не завоевала популярности и очень скоро была перевернута обратно. Сама по себе градуировка термометров доставляла не меньше хлопот, чем конструкция термометра. Это связано с вопросом о том, происходит ли расширение используемых в термометрах жидкостей (воды, спирта, ртути)