Критика платонизма у Аристотеля. Диалектика числа у Плотина

2) Второй аргумент, с трудом откапываемый из–под груды непонятных выражений, гласит следующее. Пусть все числа несчислимы. Это значит, что в Едином мы получаем некую одну единицу, одно–в–себе; далее, в Двоице мы имеем первую входящую в нее единицу, которая, если считать первое Единое, будет уже второю, другая, входящая в Двоицу, будет по общему счету уже третьей. Стало быть, уже для сформирования Двоицы требуется три единицы, т. е. число «три». Другими словами, «единицы будут раньше чисел, из которых они образуются» (1081а 29— 35). Это выражено туманно. Для ясности надо было бы говорить не о «единицах», но о порядковых числах, а вместо термина «число» нужно было бы сказать «количественное число». Правда, сам Аристотель признает, что платоники не понимают свою теорию несчислимости именно этим способом. Для них, можем мы добавить от себя, существуют отдельные несчислимые, качественно определенные числа; и они вовсе не решают вопроса об отдельных единицах. Тем не менее, по Аристотелю, они должны так рассуждать (а35—37). Но истина против них. Можно рассуждать двояко, говорит Аристотель. Можно, во–первых, считать, что существуют разные единицы, поставленные в один ряд; тогда получится ряд: первая единица, вторая единица, третья единица и т. д. Можно, во–вторых, сказать, что существуют разные двойки, поставленные в один ряд; тогда получится ряд: первая двойка, вторая двойка, третья двойка и т. д. Единицы в первом ряду и двойки во втором ряду будут, очевидно, какими–нибудь именованными, окачество–ванными единицами и двойками, что и даст возможность им различаться. Но нельзя, говорит Аристотель, объединить эти два ряда и брать их одновременно. Если мы взяли первый ряд, то первым членом у нас явится единица. Следовательно, нельзя уже будет говорить, что первым членом является двойка (и брать, стало быть, уже второй ряд). А платоники поступают именно так. У них Единое есть первый принцип, а Двоица — тоже первый принцип. При этом, имея Единое как первое, они не имеют второго, третьего и т. д. Единого; имея Двоицу как первую, не создают второй, третьей и т. д. Двоицы. Но раз нет второго и третьего чего–нибудь, как оно может быть первым (1081b 1 —10)?

Нетрудно заметить ошибочность всей этой аргументации. Ясно, что Аристотель продолжает стоять на точке зрения чистого формалистического представления о числе. «Единое» и «Неопределенная Двоица» являются для него не диалектическими принципами, конструирующими всякое число, включая единицу и двойку, но просто лишь числами в обыкновенном натуральном ряду. Поэтому ему кажется странным, почему это — первые принципы, а никаких вторых чисел, следующих за ними, не имеется. Это, конечно, первые принципы, но не количественно первые, не в натуральном ряду чисел первые, ибо они даже и вообще не суть числа. Они — диалектически первые и диалектически же имеют за собой вторые, третьи и т. д. принципы. Так, напр., можно с полным правом сказать, опираясь на платоновского «Филеба», что если «предел» и «беспредельное» есть первые принципы, то «число», появляющееся из их синтеза, или «смесь» (как говорит Платон), есть, несомненно, второй принцип. Но это — счет совершенно в особом, не в арифметическом смысле. Аристотель же, не понимая диалектически–принципной природы Единого и Двоицы, берет их в чисто арифметическом смысле. И тогда действительно становится непонятно, как же за первым Единым следует не вторая, но опять первая же Двоица и как после первой Двоицы нет второй, третьей и т. д. Двоицы. Ясно, что здесь двусмысленность термина «первый».

К тому же сводится и первая половина аргумента (о том, что «единицы раньше чисел»). Если Единое и Двоицу ставить в качестве начала натурального ряда, тогда действительно в Двоице уже будет заключаться тройка, ибо единица плюс две единицы в Двоице есть уже 3, а не 2. Но это полная путаница понятий. Единое и Двоица вовсе не числа, и их невозможно складывать с обычными числами натурального ряда. Есть только очень маленькая частица истины в рассуждении Аристотеля, но она вовсе не против Платона, а — за него: именно, всякое «идеальное» число, напр. пятерка, всегда больше, чем просто сумма пяти единиц. Это не только пять абстрактных и совершенно однородных полаганий, но это есть некоторая их картинная расположенность, не заключающаяся в пяти единицах как таковых. Такое привнесение вне–количественного момента, конечно, делает число гораздо более богатым, так что вполне понятно, что мы можем иметь отдельные единицы и их суммы, т. е. дойти в порядковом счете до определенного числа, и — все же еще не получить «идеального» числа. Но эта «истина» в рассуждении Аристотеля не есть возражение платоновской теории, а только ее отдаленное изложение.

3) Наконец, третий аргумент, относящийся к абсолютно несчислимым числам, сводится к следующему. Когда мы имеем дело с арифметическим числом, то тут натуральный ряд возрастает путем прибавления единицы к предыдущему числу. К сущности арифметического числа относится его складываемостьу сложенность из отдельных единиц. Платоники говорят то же о двойке, тройке, четверке и т. д. Значит, они тоже в каком–то смысле складывают единицы, в каком–то смысле счисляют числа и делают их однородными. Этого, однако, они не имеют права делать, так как вместо прибавления (πρόσθεσις) они говорят о порождении (γεννάν, γέννησις) чисел из Единого и Неопределенной Двоицы. Или числа абсолютно несчислимы — тогда в них нет первого, второго, третьего и т. д.; или в них есть действительно единица, двойка, тройка и т. д., и — тогда они не происходят из Единого и Неопределенной Двоицы. В самом деле, возьмем, напр., число четыре. Арифметик–практик просто скажет, что четверка состоит из четырех единиц — конечно, совершенно однородных и абсолютно бескачественных. Платоник скажет иначе. Для него четверка будет «происходить» из ряда потенций. Сначала он будет иметь Единое само в себе, потом найдет другое одно; отсюда он получит через прибавление свою Двоицу. Но эта Двоица еще не будет даже и идеальной двойкой. Идеальная двойка, или двойка–в–себе, получится путем перехода еще к новому числу. И только когда сюда присоединится еще третья двойка, мы получаем четверку. Значит, для получения четверки платоникам нужны три двойки: Неопределенная Двоица, идеальная двойка (или двойка–в–себе) и та двойка, прибавление которой к идеальной двойке дает четверку. Такая нелепость получается только потому, что платоники одновременно утверждают и полную несчисли–мость чисел, и их складываемость. Если бы они стояли только на точке зрения чистой несчислимости, то тогда не было бы этой нелепости, но тогда вообще не было бы никакой последовательности в числах. А если бы они стояли на точке зрения чистой складываемости, тогда им незачем было бы утверждать существование Неопределенной Двоицы, а достаточно было бы иметь одно Единое и — потом путем «прибавления» получать все прочие числа; тогда четверка не состояла бы из трех двоек (1081b 10— 26).

Так я понимаю этот аргумент Аристотеля. В нем есть доля истины, сводящаяся к тому, что идеальные числа не могут обойтись без складываемости, т. е. без счислимости. В каком–то смысле они — неисчислимы, но в каком–то — счислимы. Таким образом, не может быть полной и абсолютной несчислимости. Но это едва ли противоречит платонизму. Что же касается упрека о трех двойках, входящих в четверку, то этот аргумент опять основывается на игнорировании диалектически–принципной природы Двоицы и на поставлении ее в обычный натуральный ряд. К этому припутывается у Аристотеля еще неотличение идеального числа от арифметического, так что «двойку–в–се–бе» он находит нужным «складывать» с двумя, или «помножать» на два, чтобы получить четверку. Отсюда и — нелепый вывод, что 4 = 6. На этом же основании я мог бы сказать, что 1 =2, так как в понятие единицы входят понятия тождества и различия, т. е. два момента. Раз в единицу входит два логических момента, то, след., она и равна двум. А если при достаточной подробности анализа мы найдем в единице пять логических моментов, то, значит, мы должны считать, что 1 = 5. Это слишком явная нелепость.

Ничего не говорит также и заключение предыдущего аргумента, 1081b 27—32. Тут Аристотель утверждает, что если существует идеальная двойка, то не может существовать никаких других двоек. Непонятно, о каких, собственно, других двойках говорит тут Аристотель. Швеглер (IV 319) понимает это так, что тут имеются в виду двойки, входящие в четверку, шестерку, восьмерку и т. д., и весь аргумент получает в его интерпретации такой смысл: числа — несчислимы; след., несчислимы и двойки; след., несчислимы и числа, составленные из двоек (то же — относительно троек). Эта интерпретация — очень складная, и я ничего не могу придумать лучшего. Но тогда это есть не больше как повторение предыдущего аргумента, так как и здесь все зависит от того, что Аристотель не понимает совмещения счислимости и несчислимости в платоновском «идеальном» числе.

b) Таковы три основных возражения Аристотеля против «идеальных» чисел. Попробуем теперь сравнить эти три аргумента между собою и посмотрим, нельзя ли уловить в чем–нибудь их логическое единство или взаимную последовательность.

Вопрос идет об абсолютной несчислимости, о несводимости чисел на чисто количественные моменты Аристотель отвергает абсолютную несчислимость и пытается доказать, что числа счислимы. Как он это делает? Он берет те принципы, из которых Платон конструирует понятие числа, и — их рассматривает. Это — принципы Единого и Неопределенной Двоицы, определенного (или предела) и беспредельного. «Одно» требует иного, отличаясь от него; и оно же с ним отождествляется, порождая отсюда натуральный ряд чисел. Аристотель анализирует эти принципы единичности и расплывающейся множественности и утверждает о них такие мысли, которые явно свидетельствуют о невнимании его к диалектической природе этих принципов. Но уступим ему в этом и не будем требовать от него адекватного отражения теории Платона. Зададимся целями чисто имманентного его анализа и станем на его собственную точку зрения. Что получится? Получится, что упомянутые принципы числа Аристотель понимает чисто счетно, арифметически. Пойдем и в этом за ним, ибо ничто не может нам помешать относиться счетно–арифметически к любому предмету, который только существует на свете. Но, ставши целиком на такую имманентную точку зрения, мы вдруг замечаем, что Аристотель действительно если не возражает Платону, то во всяком случае интересно его дополняет.

Именно, пусть число есть такая структура, появляющаяся из определенного взаимоотношения каких–то двух принципов. Какие бы это принципы ни были и как бы они между собою ни относились, но уже один тот факт, что они — разные, т. е. что их — два и что они как–то относятся один к другому, — уже этот один факт твердо обнаруживает какую–то их соизмеримость, какую–то сравнимость и, значит, счислимость. Допустим, что эти два или несколько принципов совершенно никак не похожи друг на друга, что они совершенно никак не соизмеримы, никак и ни с какой стороны не сравнимы. Как же они могли бы тогда совокупно породить нечто целое и единичное, да еще такую целую, единичную и определенную структуру, как число? Явно, что эти два принципа, какие бы они ни были и как бы они один к другому ни относились, должны как–то отождествиться, чтобы породить нечто целое. Поэтому можно отбросить все те нелепости, которые Аристотель возводит на платонизм, и все же найти долю истины в его возражениях. Надо только отказаться от привычки искать у Аристотеля обязательно точного и адекватного воспроизведения и понимания платонических учений. Надо в конце концов перестать удивляться искажениям, которые допускает Аристотель. Раз навсегда установим: Аристотель совершенно не понимает Платона. Но, будучи не прав трансце–дентно, а равно очень часто будучи не прав и имманентно, он все же иногда бывает прав имманентно; и у него есть точки зрения, которые, будучи очищены от всякого отношения к платонизму (что только затемняет все дело), сами по себе имеют большую ценность, составляя или важное дополнение к платонизму, или подчеркивание сторон, оставшихся там в тени.

Это и есть общая идея всех трех аргументов Аристотеля против Платона. Аристотель не прав, признавая только арифметические числа. Но он прав, когда утверждает, что чистая несчислимость немыслима, что о каких бы числах ни говорить, они всегда кроме всего еще и счислимы. Обращаясь к Платону, мы действительно находим, что и диалектика того же требует. Тут — то же отношение между Аристотелем и Платоном, что и в проблеме логики. Аристотель отвергает диалектику Платона и выдвигает на ее место формальную логику с «законом противоречия» в основе. Но по существу дела формальная логика, если не брать ее в ее полной и абсолютной исключительности, а брать как таковую, не только не противоречит диалектике, но, наоборот, есть один из ее диалектически необходимых и подчиненных моментов. Диалектика вся ведь стоит на одновременном принятии положений, что Л есть Л и Л не есть Л. Первое из них есть основание формальной логики; и, значит, последняя есть только тезис в диалектике, к которому уже сама диалектика прибавляет антитезис и синтез.

с) Установивши общую платформу аристотелевской критики абсолютной несчислимости, попробуем установить логическое сравнение трех основных аргументов, в которых она выражена.

Первый аргумент в последнем своем основании сводится к тому, что оба принципа, входящие в структуру числа, уже составляют собою некую двойку, т. е. что они по этому самому сравнимы. Отсюда: или числа действительно несчислимы, тогда несчислимы и эти два принципа между собою и тогда все числа появятся сразу из того принципа, который определяет собою множественность вообще, т. е. из одного второго и Двоицы; или числа происходят подлинно из двух принципов, не из одной Двоицы — тогда эти принципы счислимы и возможной оказывается их последовательность. Ясно, что этот аргумент детализирует общую идею критики в направлении взаимоотношения обоих принципов. Этих принципов — два; значит, они (а за ними и числа) счислимы. — Второй аргумент, далее, основывается на том, что в самой Двоице наблюдается двойство, т. е., говоря вообще, множественность. Если число образуется из принципа единичности и принципа беспредельного становления, или множественности, то счислимость наблюдается не только тогда, когда берутся оба принципа, но и тогда, когда берется один второй. Раз — множественность, «Двоица» — значит, счетность имманентно уже введена в самую структуру этого принципа. Поэтому Аристотель и утверждает, что раньше, чем мы образуем тройку, четверку и т. д., — все эти числа уже будут крыться в Двоице (так можно было бы в обобщенной форме выразить то, что Аристотель, как мы помним, выразил несколько уже и частичнее). — Наконец, третий аргумент вскрывает необходимость в каждом числе момента «прибавления», или момента складываемости. Если его нет, тогда нет и вообще никакого «первого», «второго», «третьего» и т. д..

А если он есть (а он обязательно есть и для всякого платонизма), то и оба принципа числа и, следовательно, сами числа как–то складываемы, т. е. как–то можно перейти от одного из них к другому путем прибавления отдельных единиц. Я думаю, что здесь Аристотель детализирует свою общую антиплатоновскую идею в направлении констатирования счислимости в образовании отдельных чисел из двух первопринципов.

Из этого сопоставления трех аргументов на почве объединяющей их идеи вытекает, мне кажется, с полной ясностью и их логическая связь. Числа должны быть счи–слимы внутри, себя и друг с другом. И эта счислимость видна 1) на взаимоотношении разных принципов их структуры, на 2) характере каждого из них или по крайней мере одного принципа (так как один из принципов числа вообще должен указывать на стихию его множественности), на 3) способе конструирования отдельных реальных чисел из этих принципов. Счислимость есть, другими словами, 1) в каждом логическом моменте, входящем в понятие числа, 2) в их взаимоотношении и 3) в продукте этого взаимоотношения, или в реальном числе. В такой яснейшей форме я мог бы представить себе логическое содержание того грамматического и философского сумбура, из которого состоит вышепроанализированный текст XIII 7, 1081а 17— bЗЗ.